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a  b  s  t  r  a  c  t

Robustness  is an important  construct  in domains  as  diverse  as evolutionary  biology,  structural  engi-
neering,  and  decision-making.  Unfortunately,  in  many  domains,  most  relevantly  cognitive  science,
considerations  of robustness  end with  vague  semantic  references.  Little  attention  is  paid  to  formal  anal-
ysis.  The  aim  of  this  paper  is to initiate  a discussion  in  the scientific  community  regarding  methods  for
quantifying  and  analyzing  robustness.  To  this  end,  we  propose  a means  for  assessing  robustness  that
may  supplant  the  current  ambiguous  use  of  the  term.  We  demonstrate  our  quantitative  approach  using
examples  of heuristic-based  decision  processes,  selected  due  to  their  explicit  association  with  robust-
ness  in  the  psychological  literature.  These  examples  serve  to  illustrate  basic  properties  of  our general
methodology  for  quantifying  robustness.

© 2013 Society  for Applied  Research  in  Memory  and  Cognition.  Published  by Elsevier Inc.  All rights
reserved.

On January 15th, 2009, US Airways Flight 1549 departed
LaGuardia airport bound for Charlotte, North Carolina. During its
initial climb, the aircraft struck a flock of Canada Geese. The result-
ing damage to the engines caused an immediate and complete loss
of thrust.

Bird strikes have long been a concern in aviation. However, the
majority of bird strikes go unnoticed; 85% cause no discernible
damage to aircraft (Borrell, 2009). Catastrophe is usually avoided
because jet engines are designed to withstand bird strikes, due to
the known risks associated with engines and birds sharing the same
airspace. This type of dynamic environmental risk is the motivation
behind Design For Variation, a strategic initiative launched by Pratt
& Whitney (Reinman et al., 2012). Design for Variation embraces the
idea of designing a system that can operate in a variable environ-
ment. Design for Variation provides aircraft engines with a degree
of robustness that increases passenger safety. For example, aircraft
engines are constructed to operate across a range of altitudes and
weather conditions. Systems cannot be robust against all environ-
mental variations, however: it would be impractical to build aircraft
that could accommodate all conceivable events. The engines in this
example, though able to withstand isolated bird strikes, were not
able to withstand the stress of an entire flock of geese.

Fortunately, because of his extensive training and experience,
captain Chesley Sullenberger was able to land the transformed
‘glider’ on the frigid water of the Hudson River, saving the lives
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of everyone onboard. The event has since been labeled the “Mira-
cle on the Hudson” (Fraher, 2011). Captain Sullenberger’s piloting
skills proved more robust than the aircraft’s engines.

1. From physical robustness to cognitive robustness

The juxtaposition between the pilot’s robustness and the air-
craft’s fragility highlights the relevance of cognition to system
performance. Looking beyond this one anecdote, evidence for the
relevance of robustness to cognition comes from the recently
released Oxford handbook of cognitive engineering (Lee & Kirlik,
2013), where 21 of 45 chapters mention robustness. Of these, how-
ever, only two  go on to define the term, and none attempt to
quantify robustness. This is representative of psychological sci-
ence as a whole: a review of psychology and behavioral science
journals using Web  of Science returned 441 articles containing the
words ‘robust’ or ‘robustness’ within their title (January, 2013). Of
these, approximately 46% pertained to statistical methods, 26% to
empirical phenomena, 18% to psychosocial assessment and treat-
ment, and 10% to cognitive capacities. The overwhelming majority
of articles never defined ‘robust’. Definitions from the few articles
that did so underscore the varied ways in which the word is used
(Table 1). Further, no article provided a quantitative measure of
robustness. Apparently, the word robust, though regularly used, is
rarely defined and never quantified.

2. From semantic ambiguity to mathematical precision

Gluck et al. (2012) defined robustness as, “. . . the extent to which
a system is able to maintain its function when some aspect of the
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Table  1
Sample uses of the terms ‘robust’ and ‘robustness’ in the psychological sciences.

Subfield Example Interpretation

Statistical “Robust methods include finding
population parameters, estimators, and
hypothesis-testing methods that are not
drastically affected by small changes in a
distribution” (Wilcox, 1998, p. 5).

Stable

Statistical “The term robust statistics refers to
procedures that are able to maintain the
Type I error rate of a test at its nominal
level and also maintain the power of the
test, even when data are nonnormal and
heteroscedastic” (Erceg-Hurn &
Mirosevich, 2008, p. 593).

General/Strong

Empirical “In fact, the findings . . . are highly robust
and consistent. All attempts at replication
have found the same pattern of results”
(Wynn, 2000, p. 1535).

Replicable

Empirical “To demonstrate that the learning effect
was  robust for older controls, we
conducted an analysis on their data only.
The effect of behavior remained highly
significant, F(1, 10) = 14.88, P < 0.003,
�2 = 0.60” (Todorov & Olson, 2008, p. 199).

Strong

Psychosocial “Another crucial test is whether the
prototypes are robust; that is, replicable
across different samples” (Eaton, Krueger,
South, Simms, & Clark, 2011, p. 1152).

Replicable

Psychosocial “Investigations of generalizability or
‘robustness’ of intervention effects are also
important. Answers to questions such as
for what groups does this intervention,
delivered by what types of staff, produce
effects on what outcomes and under what
conditions are essential” (Glasgow et al.,
2008, p. 787).

General

Cognitive “Robustness is associated with the ability
to protect skilled performance from
various disturbances, including
unexpected events, interruptions, or
changing demands” (Taatgen et al., 2008, p.
548).

Stable/General

Cognitive “The robust satisficer answers two
questions . . . of the options that will
produce a good enough outcome, which
one will do so under the widest range of
possible future states of the world”
(Schwartz, Ben-Haim, & Dacso, 2010).

General

system is subject to perturbation” (p. 193). This definition resonates
with the conception of robustness in biology: a biological system
is robust if it continues to function despite perturbations (Kitano,
2004; Larhlimi, Blachon, Selbig, & Nikoloski, 2011; Wagner, 2005).
Robustness is quantified by measuring the size or volume of the
parameter space that yields viable performance (i.e., global analy-
sis),  or by evaluating the effects of specific parameter changes on
model behavior (i.e., sensitivity analysis). Gluck et al.’s definition
also resonates with the conception of robustness in structural engi-
neering: a structure is robust if the loss of a load-bearing component
does not cause progressive disproportionate collapse (Canisius,
2011; Starossek & Haberland, 2012). Robustness is quantified by
comparing the stiffness of damaged and intact structures, or by
estimating the progressive collapse resulting from an initial cause.

Control theory provides additional mathematical tools for find-
ing optimal control solutions, which are described as ‘robust’
(Jagacinski & Flach, 2003). Our quantification of robustness, and the
quantification of robustness in biology and engineering, does not
directly concern optimization, however (e.g., Dueck, 1993). Rather,
we are interested in the cognitive system’s ability to function in
varying conditions.

Though limited measures of robustness exist in biology and
engineering, cognitive scientists have not attempted to quantify

robustness. Doing so in basic and applied psychological research
is worthwhile for precisely the same reasons that such techniques
have been proposed in other fields. Formal quantitative measures,
much like formal computational models, enhance the transparency
of predictions and testability of theories (Marewski & Olsson, 2009;
Tomlinson, Marewski, & Dougherty, 2011). Formal quantitative
measures also provide an objective way to express and compare
the outcomes of different interventions in applied settings. In short,
quantitative measures advance science and enable application in a
way that qualitative semantic references cannot.

The purpose of this paper is to introduce a quantitative method
for assessing robustness. We  describe this method, and apply it to
previously published results from decision heuristics research. We
chose this particular subset of the scientific literature because of its
explicit association with robustness in a variety of recent publica-
tions (Gigerenzer, 2008; Gigerenzer & Brighton, 2009; Gigerenzer
& Gaissmaier, 2011; Marewski & Gigerenzer, 2012; Marewski &
Schooler, 2011). That said, our measure is general and can be
applied to a wide range of topics within and beyond cognitive
science.

3. Quantification method

Working from Gluck et al.’s (2012) qualitative description of
robustness, we can construct a quantitative measure. Functional-
ity (a dependent variable) is measured with respect to perturbations
(independent variables). Perturbations may  evoke changes in func-
tionality. Robustness is the value that arises from the integration of
functionality over the range of evaluated perturbations.

To quantify robustness, one must first specify the system’s func-
tion. In simple scenarios, the system’s function may  be determined
by a single constraint, for example, to respond correctly or to dis-
cover a source of nutrients. In more complex scenarios, the system’s
function may  be determined by multiple constraints, for example,
to discover a source of nutrients quickly and with minimal expen-
diture of metabolic resources. We  define functionality as the ability
of a system to achieve its goal.

To quantify robustness, one must also specify the perturbations
the system is liable to encounter. We  envision the environment as
a multivariate space (Fig. 1). Each scenario the individual may  face

Fig. 1. Environment defined by two  dimensions (fatigue and caffeine consumed).
Altering the values along the dimensions creates two scenarios within the environ-
ment. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web  version of the article.)
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constitutes a point in space defined by the values of the variables, or
dimensions, that comprise the environment. Variables can be inter-
nal to the individual, for example, the number of hours slept during
the previous night, or the amount of caffeine consumed. Variables
can also be external to the individual; for example, time of day,
ambient lighting, and the frequency of critical events in jobs that
require sustained attention (e.g., air traffic control). Perturbations
involve manipulating the values of one or more variables in order
to move the individual from one scenario to another.

After defining a system’s function and identifying the pertur-
bations the system is liable to encounter, one can quantify the
robustness of the system against those perturbations. Broadly, this
entails three steps: calculate functionality, assess robustness, and
measure stability.

3.1. Method

Step 1: Calculate functionality
Starting from a single scenario, we ask, did the system achieve

its function? Functionality is defined as,

Functionality =
(

S − F

T

)
(1)

Success (S) is how frequently, or the degree to which, the sys-
tem achieved its function in the scenario, and failure (F) is how
frequently, or the degree to which, the system did not achieve its
function. Success and failure can be defined by a single objective
(e.g., Did the system respond correctly?),  or by multiple objectives
(e.g., Did the system respond correctly and within the allocated time?).

The setting of tolerance (T) depends on the consequences of
failure. If errors result in the loss of lives, tolerance must be low.
If errors are inconsequential, tolerance may  be somewhat higher.
Tolerance relates to the notion of risk-based criteria (e.g., main-
tain below 3.4 failures per million opportunities, or 3.4 × 10−6), as
used in Six Sigma design. Our measure of functionality takes spe-
cial meaning when tolerance expresses the ratio of allowable risk
to one minus allowable risk, risk/(1 − risk). When tolerance is set in
this way, negative functionality indicates that the system exceeds
allowable risk, and positive functionality indicates that the system
remains safely within allowable risk.

There are several approaches for establishing risk-based criteria
(Reinman et al., 2012), and in turn, tolerances. Risk-based criteria
can be set to levels associated with previous acceptable perfor-
mance. For example, the standard for landmine detection specified
in the Operational Requirements Document for the AN/PSS-12
handheld mine detector is 92% (US Army, 1990). In terms of a
model of landmine detection (Staszewski, 2006), this translates to
a tolerance of 0.087. Risk-based criteria can also be based on fed-
eral standards. For example, the National Assessment Governing
Board (NAGB) issued achievement levels for math skills targeted
by the National Assessment of Education Progress (NAEP) in Grade
12 Mathematics Assessment (ACT, 2005). Proficiency in perform-
ing basic mathematical operations was gauged by achieving 90%
accuracy. This translates to a tolerance of 0.111. The standard for
evaluating algebraic expressions, equations, and inequalities was
somewhat lower (73%). This translates to a tolerance of 0.370.
Lastly, risk-based criteria can be determined using tools such as
a risk matrix or economic analysis of total costs. Such tools have
been used in civil engineering and medical decision-making to
establish target levels of reliability (Huaco, Bowders, & Loehr, 2012;
Weinstein & Fineberg, 1980).

Within the same task, different types of errors may  be associ-
ated with different outcomes. For example, the consequences of
failing to detect certain traffic signals, such as vehicle brake lights,
are catastrophic (i.e., collision). The consequences of responding
prematurely to traffic signals are somewhat less severe (i.e., con-

gestion). Signal detection theory (SDT) accounts for the values of
different outcomes: Swets, Dawes, and Monahan (2000) noted that
choices should be aligned with the consequences of different deci-
sions. For example, the cost of misdiagnosing cancer in a healthy
individual may  be less than the cost of failing to diagnosis cancer in
a sick individual. These considerations suggest a necessary exten-
sion of our method to problems where responses cannot simply be
counted as successes or failures. In such cases, different tolerances
may  be assigned to different response categories,

Functionality =
(

[S1 + S2 + · · · + Sm] −
[

F1

T1
+ F2

T2
+ · · · + Fn

Tn

])
(2)

where S1. . .m refer to the percentage of successful responses in each
of m categories, and F1. . .n refer to the percentage of unsuccessful, or
failed responses in each of n categories. T1. . .n describe the unique
tolerances for each type of failure.

The range of functionality scores is context specific: its upper
bound equals one, and its lower bound equals the negative inverse
of the strictest tolerance, −1/min(T1. . .n).1 To facilitate interpreta-
tion across contexts, we  advocate normalizing functionality scores,

Functionalitynorm = min(T1...n) · Functionality + 1
min(T1...n) + 1

(3)

The resulting scores fall between one (maximally functional)
and zero (minimally functional).

Step 2: Assess robustness
For all scenarios created by combinations of environment

dimensions, we ask, how well did the system achieve its function?
Robustness is defined as,

Robustness =
∫

Functionality(x) · Probability(x) dx (4)

Probability(x) describes the likelihood that scenario x will occur.
Without prior information, all scenarios are treated as equally
likely. Given that the probability weighting function sums to one,
and that the maximum possible value of functionality equals one,
the maximum possible value of robustness also equals one. As func-
tionality decreases to zero, so too does robustness.

Step 3: Measure stability
Lastly, we  ask, how much did functionality vary across scenar-

ios? Stability is defined as,

Stability = 1 − 2 · std(Functionality(x)) (5)

Stability depends on the variability among functionality scores.
Because normalized functionality scores fall between zero and one,
the range of the standard deviation among functionality scores is
0.0 to 0.5. We multiply standard deviation by two  to place our mea-
sure of stability between zero and one. Further, we assign negative
value to the standard deviation because stability is inversely related
to variability among functionality scores. The resulting stability
scores fall between one (maximally stable) and zero (minimally
stable).

Fig. 2 illustrates four scenarios created by crossing conditions of
high and low robustness and stability. The ideal system is robust
and stable. The explicit separation of robustness and stability devi-
ates from the typical control theoretic interpretation of robustness
(Zhou & Doyle, 1997), which is actually what we  call stability.

1 In terms of Eq. (1), this corresponds to the case where the proportion of success-
ful responses equals zero (S = 0) and the proportion of failed responses equals one
(F  = 1).
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Fig. 2. Functionality of more robust and less robust systems, and of more stable and
less  stable systems. A more robust system has high functionality over a variation
in dimension. A more stable system has consistent functionality over a variation in
dimension. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

3.2. Implementation

Robustness can be assessed empirically. For example, the func-
tionality of a cognitive process can be observed as the process
is evoked across scenarios. This is called empirical functionality
because it relates to the observed functionality of a system in differ-
ent scenarios. Robustness can also be assessed through simulation.
For example, a cognitive process can be instantiated computation-
ally to explore its functionality across simulated scenarios. This
is called predicted functionality because it relates to the expected
functionality of a system in different scenarios. In both cases,
robustness is quantified by: (1) calculating functionality in iso-
lated scenarios; (2) assessing the maintenance of functionality (i.e.,
robustness) across scenarios; and (3) measuring stability across sce-
narios.

In the three examples that follow, we use simulations to mea-
sure predicted functionality at equally spaced points along a grid
spanning the environment dimensions (i.e., a Latin Hypercube;
McKay, Beckman, & Conover, 1979). Because our simulations are
stochastic, we calculate a distribution of functionality scores at each
point. Robustness and stability describe functionality over all points
spanning the environment dimensions. To quantify robustness and
stability, we generate samples. Each sample contains one function-
ality score from every point. The mean of functionality within a
sample provides an estimate of robustness, and the variance of
functionality within a sample provides an estimate of stability. Fur-
ther, by calculating robustness and stability repeatedly using a large
number of samples, we can generate confidence intervals for these
measures.

When computational simulations are costly to run, or when
performance is evaluated empirically, it may  be feasible to assess
functionality only in a small number of scenarios. In cases where
limited information is available, one could use other simulation
or interpolation techniques to estimate robustness and stability
(e.g., Gaussian process emulators; Oakley & O’Hagan, 2004). These
techniques are not antithetical to our approach. Rather, they effi-
ciently approximate the integral of robustness (Eqs. (1) and (2)) and
stability (Eq. (3)) based on fewer scenarios.

4. Robustness of heuristic-based decisions

While describing the emergency landing of US Airways Flight
1549 on the Hudson River, we noted that the pilots’ skills were
robust against the emergency they faced following engine failure.
The pilots quickly realized they could not reach any nearby run-
ways. One might imagine that this realization required complex

calculations involving factors such as altitude, airspeed, heading,
distance, and wind speed. In fact, co-pilot Jeffrey Skiles stated in an
interview, “It’s not so much a mathematical calculation as visual,
in that when you are flying in an airplane, a point that you can’t
reach will actually rise in your windshield” (Gigerenzer, Hertwig,
& Pachur, 2011, p. 633). Skiles’s response contains a description
of a visual tracking strategy called the gaze heuristic. The gaze
heuristic is easy to enact and effective. These two properties, ease
and effectiveness, are characteristic of heuristics more generally
(Gigerenzer, 2008).

According to the adaptive toolbox theory (Gigerenzer &
Gaissmaier, 2011), the mind contains a collection of such heuristics.
These heuristics are fast in that they employ simple information
processing operations, and they are frugal in that they require lit-
tle information to enact. For example, the gaze heuristic requires
determining whether a target rises, falls, or remains level within the
visual field. By capitalizing on statistical regularities in the environ-
ment, heuristics perform as well as, or better than, methods that
employ more complex calculations and require greater amounts of
information. For these reasons, heuristics are thought to be espe-
cially robust to environmental variation (Brighton & Gigerenzer,
2011; Gigerenzer, 2008; Gigerenzer & Brighton, 2009; Gigerenzer
& Gaissmaier, 2011; Rieskamp & Otto, 2006).

Although researchers have identified and established formal
models of decision heuristics, this literature lacks a formal metric
and methodology to evaluate the robustness of different decision
strategies. To address this deficiency and demonstrate our quanti-
tative method, we now apply it to three examples from the decision
heuristics literature. The first example measures the robustness of
take-the-best, tally, and regression against variation in the size of
the training set (Dawes, 1979; Gigerenzer & Goldstein, 1996). This
example involves quantifying robustness over a single dimension.
The second example evaluates the robustness of the recognition
heuristic against variations in recognition validity and recogni-
tion rate (Goldstein & Gigerenzer, 2002). This example extends the
methodology to a multi-dimensional case where the likelihoods
of different scenarios vary. The third example assesses the robust-
ness of four fast and frugal trees against variations in base rates
and payoff structures (Luan, Schooler, & Gigerenzer, 2011). This
example centers on manipulations of tolerance. Although each of
these examples comes from the literature on heuristic decision-
making, our method is not limited to these types of tasks. Rather,
our method is extremely general, a point that we return to in the
discussion.

4.1. Probabilistic inference

Probabilistic inference involves choosing between alternatives
based on several attributes, each of which is differentially asso-
ciated with an alternative’s value. For example, an investor might
consider several features of two equity funds before allocating their
resources to one. Such decisions are complicated by two factors.
First, no single attribute or combination of attributes typically pre-
dicts the best alternative with certainty: outcomes are probabilistic
rather than deterministic. Second, different attributes typically
favor different alternatives: no single alternative is dominant.

The take-the-best (TTB) heuristic is a model of how individuals
infer which of two  alternatives has a higher value on a criterion
(Gigerenzer & Goldstein, 1996). TTB searches attributes in order
of their validity, stops upon identifying an attribute that discrim-
inates between alternatives, and selects the alternative with the
greater attribute value. The tally (TAL) heuristic is another model
of how individuals make probabilistic inferences. TAL evaluates
all attributes, counts the number of positive attributes for each
alternative, and selects the alternative with the greater number of
positive attributes (Dawes, 1979). TTB and TAL are fast in that they
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use only simple mathematical operations (i.e., binary comparisons
and counting). Additionally, TTB is frugal in that it can be applied
given very little information about alternatives.

Multiple linear regression is the standard, statistical solution to
the probabilistic inference problem. This technique involves esti-
mating the set of weights that best predict the scalar value of a
dependent variable based on one or more explanatory variables
(Brunswik, 1955). In the context of probabilistic inference, the
regression model (REGRESS) evaluates all attributes, computes a
weighted sum of the attributes for each alternative, and chooses
the alternative with the greatest resulting value. REGRESS is not
fast. Application of the model requires computing a weighted sum
of attributes, which entails a considerably more complex set of
mathematical operations. REGRESS is also not frugal. Application of
the model requires evaluating all attributes. These considerations
notwithstanding, REGRESS constitutes a statistically motived solu-
tion to the probabilistic inference problem.

Despite their simplicity, TTB and TAL sometimes perform as
well as, or better than, the more sophisticated REGRESS model.
For example, Czerlinski, Gigerenzer, and Goldstein (1999) reported
that the accuracy of TTB exceeds the accuracy of REGRESS when
the number of observations used to train the models is small. This
prompted us to ask, how robust are TTB, TAL, and REGRESS against
variation in the size of the training set? A robust and stable strat-
egy would yield the correct answer with high probability across all
levels of training. A robust but unstable strategy would yield the
correct answer with medium probability at low levels of training,
and with high probability at high levels of training.

To answer this question, we simulated performance in a city
population task (Gigerenzer & Goldstein, 1996). In the task, par-
ticipants view a pair of cities and are asked which has the
larger population. Gigerenzer and Goldstein (1996) identified nine
attributes that correlated with the populations of 83 German cities.
Attributes differed in their validity; that is, the proportion of times
that the attribute predicted the larger city when the attribute’s
value was positive for one city in the pair and negative for the other.
Some attributes had high validity (e.g., Does the city have a major
league soccer team?), and others had low validity (e.g., Is the city in
the industrial belt?).

During training, we varied the number of German cities from
8 to 75 (∼10% to 90% of the 83 German cities, yielding 68 train-
ing set sizes). During test, we generated all pairings of the German
cities not included in training, and we recorded the ability of TTB,
TAL, and REGRESS to identify which city in each pair had the larger
population. In this example, the function of the three models is to
respond accurately, and the dimension along which perturbations
are applied is the size of the training set. To simplify matters, we
set tolerance to one, giving equal weight to correct and incorrect
responses.

For all values of training set size, we estimated the functionality
of the three models based on 500 simulations.2 In each simula-
tion, items in the training set were randomly selected from the
complete set of available items. The remaining items were used in
the test set. To estimate robustness and stability, we  created 500
samples that each contained a functionality score from every train-
ing set size. Thus, each sample contained 68 functionality scores.
The average functionality within a sample provides an estimate of
robustness, and the variability among functionality scores within a
sample provides an estimate of stability. Because these estimates
differ among the 500 samples, their distributions provide informa-
tion about uncertainty in our measures of robustness and stability,

2 In these examples and in all later examples, additional simulations did not
appreciably reduce error. The standard errors of all mean functionality scores from
all simulations were below 0.005.

Fig. 3. Functionality of take-the-best (TTB), tally (TAL), and regression (REGRESS)
models of probabilistic inference (±1 mean standard error) by the proportion of
items included in the training set. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

allowing the computation of associated statistics such as effect sizes
and confidence intervals.

Functionality of REGRESS was  initially low, but increased with
training set size (Fig. 3). Functionality of TTB and TAL, in contrast,
began and remained at moderate-to-high levels. Consistent with
these observations, robustness was greatest for TTB, followed by
TAL, and then by REGRESS (Table 2). Stability was  also greatest for
TTB, followed by TAL, and then by REGRESS. Although the absolute
differences among models appear modest, the effect sizes are sub-
stantial. The effect size of the difference between the robustness of
TTB and REGRESS is large (d = 5.65), as is the effect size of the dif-
ference between their stability (d = 2.72). Likewise, the effect size
of the difference between the robustness of TAL and REGRESS is
large (d = 4.52), as is the effect size of the difference between their
stability (d = 2.35). Differences between TTB and TAL were smaller,
although TTB exhibited a slight advantage as the size of the training
set increased. This is because TTB decides based on the most valid
cue that distinguishes between alternatives, whereas TAL assigns
equal weight to all cues, including those that are less valid.

TTB and TAL were more robust than their more complex coun-
terpart REGRESS. There are two reasons for this. First, REGRESS
must learn the direction and weight of cues whereas TAL must sim-
ply learn the direction of cues. Although TTB must also learn the
direction and rank of cues, Katsikopoulos, Schooler, and Hertwig
(2010) found that TTB and TAL performed well as long as the direc-
tions of the three most valid cues were known. These directions
can be inferred from very small samples. Second, flexibility in the
parameterization of REGRESS allows the model to account for a
greater percentage of variance in the training data. Some of this
variance relates to the underlying relationship between attributes
and the values of alternatives, but some of this variance arises from
noise in the sample (Gigerenzer & Brighton, 2009). Consequently,
when set size is small, REGRESS is more likely to overfit the training
data and to overgeneralize to test items.

Table 2
Robustness and stability of probabilistic inference models.

Model Robustness Stability

TTB .71 ± 0.01 SD .89 ± 0.01 SD
TALLY .71 ± 0.01 SD .88 ± 0.01 SD
REGRESS .67 ± 0.01 SD .84 ± 0.02 SD
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TTB and TAL were also more stable than their more complex
counterpart REGRESS. Indeed, neither TTB nor TAL recorded a
functionality score below 0.65. This outcome was not caused by
some odd feature of the German cities problem: we obtained sim-
ilar results with several other data sets (Czerlinski, Gigerenzer, &
Goldstein, 1999). In contrast, REGRESS only performed well in cir-
cumscribed cases. The key point is that although the choice of
strategy matters little when the training set is large, TTB and TAL are
attractive because of their weak reliance on the number of training
items. Further, to the extent that participants’ responses are robust
against variations in the size of the training set (Katsikopoulos,
Schooler, & Hertwig, 2010), this suggests that REGRESS is an inad-
equate model of human behavior.

4.2. Recognition heuristic

Heuristics research has inspired the view that the mind contains
a toolbox of decision strategies (Gigerenzer & Gaissmaier, 2011).
This is important because no single heuristic can be used for all
problems. Rather, each heuristic has a cognitive niche, or limited
scope of circumstances, in which it can be applied (Marewski &
Schooler, 2011). For example, take-the-best and tally can be used
only when the individual has background knowledge about choice
alternatives. This is unlikely to be the case when alternatives are
encountered infrequently. The recognition memory literature holds
that people experience a conscious sense of familiarity when they
are exposed to infrequently encountered items, however, even if
they cannot retrieve specific details about those items (Yonelinas,
2002).

The recognition heuristic exploits this core capacity. According
to the recognition heuristic, if the task is to select between two
alternatives, and one alternative is recognized but the other is not,
select the recognized alternative (Goldstein & Gigerenzer, 1999).3

The recognition heuristic can be applied to decisions about city
populations (Goldstein & Gigerenzer, 1999), stock-market invest-
ments (Newell & Shanks, 2004), and even peanut butter preferences
(Hoyer & Brown, 1990). Studies show that the recognized option is
consistently favored in each of these cases.

Like take-the-best and tally, the recognition heuristic is not
always applicable. The heuristic can be used only when one item in
the pair is recognized and the other is not. Additionally, the recog-
nition heuristic is not always correct. Its success depends largely
on recognition validity: the heuristic is more accurate when recog-
nition correlates with the judgment criterion (e.g., Which city has a
larger population, Zürich or Berne?), and the heuristic is less accurate
when recognition does not correlate with the judgment criterion
(e.g., Which city is located further from the Swiss city of Interlaken,
Zürich or Berne?). Based on these considerations we asked, how
robust is the recognition heuristic against variations in item recog-
nition rate and recognition validity?

The recognition heuristic has been studied extensively (for
reviews, see Gigerenzer & Goldstein, 2011; Pachur, Todd,
Gigerenzer, Schooler, & Goldstein, 2011). Conveniently, this
allowed us to base our simulations on 19 papers that collectively
included 50 studies of the recognition heuristic.4 From these, 37

3 This does not imply that the memory system exists in binary states. Con-
temporary theories of declarative memory assume continuously varying levels of
availability or activation, analogous to potentiation at the level of neural processing,
along with a threshold above which memory retrievals occur and below which they
do not. The use of the recognition heuristic simply requires that when attempting
to  retrieve two items from memory, one of the retrievals is successful (i.e., it is
recognized) and the other is not.

4 All but three of these papers (Ayton, Onkal, & McReynolds, 2011; Hilbig,
Erdfelder, & Pohl, 2011, 2012) are included in the reviews by Gigerenzer and
Goldstein (2011) or Pachur et al. (2011).

Fig. 4. Functionality of recognition heuristic by recognition rate and recognition
validity. Histograms show probability densities of recognition rate and validity from
empirical studies. Bin widths equal 0.05. Plotted curves show probability density
estimates for recognition rate and validity based on beta distributions. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

studies reported participants’ recognition rates (i.e., the percentage
of items that participants recognized). A partially overlapping set of
37 studies reported participants’ recognition validity (i.e., the prob-
ability that when one item in the pair was  recognized and the other
was not, the recognized item had greater value for the judgment
criterion). Fig. 4 shows the probability densities of recognition rates
and validities from the corresponding studies. Each was reasonably
approximated by a beta distribution (Recognition rate: r2 = 0.76,
mean squared error = 0.001; Recognition validity: r2 = 0.73, mean
squared error = 0.001).

We  varied recognition rate from 0.0 to 1.0 in increments of 0.01
(yielding 101 unique recognition rates). Additionally, we  varied
recognition validity from 0.0 to 1.0 in increments of 0.01 (yielding
101 unique recognition validities). To simplify matters, we set toler-
ance to one, giving equal weight to correct and incorrect responses.
For each combination of recognition rate and validity, we estimated
functionality based on 500 simulations. For each simulation, we
calculated the percentage of correct responses in 120 trials, the
median number of trials used in studies of the recognition heuris-
tic. In each trial, two  items appeared. Items were recognized with
probability according to the recognition rate. When one item in the
pair was  recognized and the other was  not, the model selected the
recognized item. When both items in the pair were recognized or
when neither item was  recognized, the model chose randomly.

To estimate robustness and stability, we created 500 samples
that each contained functionality scores for every combination of
recognition rate and validity. Thus, each sample contained 10,201
functionality scores (101 recognition rates × 101 recognition validi-
ties). Average functionality within a sample, weighted by the
probability density functions for the beta distributions, provides
an estimate of robustness. Variability among functionality scores,
weighted by the probability density functions for the beta distri-
butions, provides an estimate of stability. Because these estimates
differ among the 500 samples, their spreads provide information
about uncertainty in our measures of robustness and stability.

Functionality of the recognition heuristic varied non-
monotonically with recognition rate (Fig. 4). When recognition
rate was low, the model recognized neither item and chose
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Table  3
Robustness and stability of the recognition heuristic given different distributions of
recognition rates and recognition validities.

Recognition rate Recognition validity Robustness Stability

Uniform (0, 1) Uniform (0, 1) .500 ± 0.001 SD .796 ± 0.001 SD
Uniform (0, 1) Beta (10.5, 3.95) .575 ± 0.001 SD .859 ± 0.002 SD
Beta  (7.04, 5.18) Uniform (0, 1) .500 ± 0.001 SD .750 ± 0.002 SD
Beta  (7.04, 5.18) Beta (10.5, 3.95) .602 ± 0.001 SD .861 ± 0.002 SD

Note: Values in parenthesis adjacent to uniform distribution correspond to upper
and lower limits. Values in parenthesis adjacent to beta distribution correspond to
empirically derived shape parameters  ̨ and ˇ.

randomly. Likewise, when recognition rate was  high, the model
recognized both items and chose randomly. When recognition
rate was moderate, however, the model sometimes recognized
only one item in the presented pair, which it then selected. Func-
tionality was greatest when recognition rate was  moderate and
recognition validity was high. Conversely, functionality was  least
when recognition rate was moderate and recognition validity was
low. Robustness over the two dimensions was 0.602 ± 0.001 SD,
and stability was 0.861 ± 0.002 SD.

To what extent do these results depend on the empirical distri-
butions of recognition rate and validity? To answer this question,
we repeated the simulations using different combinations of beta
distributions and non-informative uniform priors. Table 3 shows
robustness and stability of the recognition heuristic for the result-
ing combinations of recognition rate and validity. The recognition
heuristic was more robust given the empirically derived beta distri-
bution for recognition rate. The recognition heuristic can be applied
only when one item in the pair is recognized. This is most likely to be
the case when 50% of total items are recognized. Recognition rates
in the majority of empirical studies tend to be near 0.50. The recog-
nition heuristic was also more robust given the empirically derived
beta distribution for recognition validity. Recognition validities in
the majority of empirical studies exceed 0.50.5 Functionality of the
recognition heuristic, in turn, was high.

Although the recognition heuristic is sometimes incorrect, it is
accurate in scenarios that individuals are more likely to encounter,
and its performance declines gracefully over scenarios that they
are less likely to encounter. Further, participants do not always
use the recognition heuristic even when it is applicable. Adherence
rate, the proportion of times that participants select the recognized
item, is positively correlated with recognition validity (Gigerenzer
& Goldstein, 2011; Pachur, 2010). Thus, although the recognition
heuristic cannot always be used and is not always correct, it is
robust over the range of scenarios where its functional contribution
is maximal.

4.3. Fast and frugal trees

Fast and frugal trees (F&FTs) are a type of decision tree with
the distinguishing trait that they have at least one exit point out
of the decision process at each level (cue) in the tree (Martignon,
Katsikopoulos, & Woike, 2008). The context of the Coronary Care
Unit (CCU) has been a focus for F&FT development, following the
proposal that using a simple heuristic approach (i.e., F&FTs) would
reduce unnecessary utilization of the CCU (Green & Mehr, 1997).
The CCU task requires a choice between admitting and not admit-
ting a patient to the CCU by deciding if that patient is at high risk
of myocardial infarction, which is damage to or death of muscle

5 These simulations treat recognition rate and validity as independent variables.
But  recognition rate and validity may  covary within individuals (Pachur, 2010).
In  additional simulations, we found that robustness and stability were minimally
affected by correlations between recognition rate and validity.

tissue in the heart. There are multiple defining signs of infarction
seen through electrocardiographic (ECG), biochemical, and patho-
logical evidence (Van de Werf et al., 2008). The decision in the CCU
task is based primarily on visual evidence, consistent with models
emphasizing perceptual categorization.

Luan et al. (2011) used signal detection theory (SDT) to ana-
lyze the behavior of three-cue F&FTs in the context of a CCU
task. They proposed that modifying the exits (decisions that
bypass the remaining cues and render a diagnosis) would produce
different results by shifting the decision-making along the liberal-
to-conservative continuum. This is a reference to how liberal or
conservative the decision maker is with regard to assigning patients
to the CCU. Exits could occur upon detecting a signal, ‘S’, and sub-
sequently assigning the patient to a CCU bed. Exits could also occur
upon failing to detect a signal, ‘N’, and subsequently assigning the
patient to a regular bed, which involves a lower and less expen-
sive level of monitoring. Four trees (F&FTSS, F&FTSN, F&FTNS, and
F&FTNN) were tested in the CCU task (Fig. 5). Hit rates (diagnosing
a sick individual) and false alarm rates (misdiagnosing a healthy
individual) differed among trees (Fig. 6). F&FTs with more ‘S’ exits
and with earlier ‘S’ exists (F&FTSS, F&FTSN, and F&FTS) had a liberal
diagnostic bias, and F&FTs with more ‘N’ exists and with earlier ‘N’
exits (F&FTNS and F&FTNN) had a conservative diagnostic bias.

The optimal decision bias depends on two  factors (Swets, Dawes,
& Monahan, 2000): the base rate of illness in the population, and
the consequences of negative and positive decisions. When the base
rate of illness is high, liberal decision strategies have greater util-
ity. Additionally, when the cost of misses (failing to diagnosis a
sick individual) exceeds the cost of false alarms (misdiagnosing a
healthy individual), liberal decision strategies have greater utility.
If these two factors are known, and if information from cues can be
perfectly integrated, SDT can be used to calculate the decision bias
that maximizes utility. In the absence of knowledge about these
factors, or in environments where the underlying statistical prob-
abilities or the cost–benefit structure are non-stationary, optimal
SDT analysis is not possible. These considerations prompted us to
ask, how robust are the four F&FTs against variations in the base
rate of illness and the penalties for errors?

In this example, responses cannot simply be counted as suc-
cesses or failures. The different types of failure, misses and false
alarms, have different consequences. To incorporate these differ-
ences into our analysis, we adopted the expanded functionality
equation,

Functionality =
(

S − M

TM
− FA

TFA

)
(6)

This allows for different contextual tolerance levels to be set for
misses, TM, and for false alarms, TFA. Although both sources of error
still reduce functionality, they do so to different extents.

We evaluated the robustness of the four F&FTs based on results
from Green and Mehr (1997). Their dataset included informa-
tion about 89 patients’ symptoms and whether they experienced
myocardial infarction. We varied the base rate of myocardial infarc-
tion from 0.10 to 0.90 in 0.01 increments (yielding 81 unique base
rates). To do so, we resampled Green and Mehr’s (1997) patient data
with replacement to create simulated samples of 100 patients. The
numbers of healthy and sick patients included in each sample were
set to yield the desired base rates.

We also varied the penalty structure. In the liberal payoff
condition, penalties for misses and false alarms were [−5, −1],
respectively. This makes it five times more costly to mistakenly
diagnose a sick patient as healthy than to falsely diagnose a healthy
patient as sick. In the balanced payoff condition, penalties for
misses and false alarms were [−1, −1]. In the conservative pay-
off condition, penalties for misses and false alarms were [−1, −5].
Tolerance values for functionality computations reflected these
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Fig. 5. Four F&FTs with different cue exits. “S” corresponds to signal, and “N” corresponds to noise.
Figure adapted from Luan et al. (2011).

penalties, with tolerance for misses (TM) set to 0.2, 1.0, and 1.0,
in the liberal, balanced, and conservative conditions, respectively.
Conversely, tolerance for false alarms (TFA) was set to 1.0, 1.0,
and 0.2, across the three conditions. We  also created intermediate
penalty structures between the liberal and balanced payoff con-
ditions by decreasing the penalty for misses from −5.0 to −1.0
in 0.5 increments, and we created intermediate penalty struc-
tures between the conservative and balanced payoff conditions by
decreasing the penalty for false alarms from −5.0 to −1.0 in 0.5
increments (yielding 17 unique penalty structures).

For each combination of base rate and penalty structure, we
estimated functionality based on 500 simulations. For each sim-
ulation, we calculated the percentage of correct responses, misses,
and false alarms during 100 trials. To estimate robustness and sta-
bility, we created 500 samples that each contained functionality
scores from every combination of base rate and penalty structure.
Thus, each sample contained 1377 functionality scores (81 base
rates × 17 penalty structures). The average of functionality scores
within a sample gives an estimate of robustness, and the variance
among functionality scores within a sample gives an estimate of
stability. Finally, the distributions of estimates from the samples
provide information about uncertainty in our measures of robust-
ness and stability.

Fig. 7 shows that the functionality of F&FTSS and F&FTSN dropped
in the conservative payoff condition [−1, −5] and when the base
rate of illness was low. Because these trees have a liberal bias, they
misdiagnosis many healthy individuals when the base rate of ill-
ness is low, producing a high rate of false alarms. This is especially
problematic when the cost of false alarms is great. Functionality of

F&FTNN dropped in the liberal payoff condition [−5, −1] and when
the base rate of illness was  high. Because F&FTNN has a conservative
bias, it fails to diagnose many sick individuals when the base rate
of illness is high, producing a high rate of misses. This is especially
problematic when the cost of misses is great.

Fig. 6. Hits (diagnosing a sick individual) and false alarms (misdiagnosing a healthy
individual) for different F&FTs in the CCU task.

Figure adapted from Luan et al. (2011).
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Fig. 7. Functionality of four F&FTs by base rate of illness and payoff balance. (For interpretation of the references to color in this figure legend, the reader is referred to the
web  version of the article.)

Among the trees, F&FTNS stands out in that its functionality is
relatively high over the range of both dimensions. Of the four trees,
F&FTNS was most robust and stable (Table 4). F&FTNS did not have
the highest functionality in all scenarios. In fact, of the four trees,
F&FTNS had highest functionality in just 41% of scenarios, F&FTSN
in 37% of scenarios, and F&FTNN in the remaining 22% of scenarios.
But unlike the other trees, F&FTNS never recorded a functionality
score below 0.78. Thus, while other trees sometimes perform bet-
ter, F&FTNS always performs well. In the absence of information
about base rate and penalty structure, F&FTNS can confidently be
enacted.

Some previously published research on F&FTs has included
comparative analysis with logistic regression models as bench-
marks (e.g., Fischer et al., 2002; Martignon et al., 2008). However,
the decision optimization available through the use of signal
detection theory makes for an even more stringent benchmark
assessment. As noted earlier, Luan et al. (2011) mapped F&FT

Table 4
Robustness and stability of four F&FTs.

Tree Robustness Stability

F&FTSS .780 ± 0.001 SD .699 ± 0.003 SD
F&FTSN .880 ± 0.002 SD .832 ± 0.004 SD
F&FTNS .904 ± 0.002 SD .924 ± 0.003 SD
F&FTNN .857 ± 0.003 SD .881 ± 0.004 SD

decision processes to SDT. This begs the question: how would
the robustness and stability of the SDT model fare in the CCU
task relative to the F&FTs? The answer is that, in principle, a SDT
model delineates the upper boundary on performance in the CCU
task. For each combination of base rate and penalty structure,
the SDT model computes and uses a different decision criterion,
providing substantial additional flexibility. This makes SDT hard to
beat, provided we  ignore the complexity of the approach. Indeed,
the SDT model was more robust (0.933 ± 0.002 SD) and stable
(0.940 ± 0.003 SD) than any of the F&FT models. Thus, it is clear that
given complete and certain information about base rates and con-
sequences, and given perfect ability to integrate information from
cues, the SDT model produces optimal performance. Yet F&FTNS
achieves 97% of the robustness and 98% of the stability attained by
the optimal SDT model without such requirements. An important
caveat is that the assumptions regarding information certainty and
information processing ability that form the foundation of optimal
SDT-based decision-making may  not hold in the real world.

Traditionally, operations research professionals have focused
on optimal solutions; solutions that are provably best given a
set of alternatives, outcomes, probabilities, and constraints that
define the choice problem. Rosenhead, Elton, and Gupta (1972),
Savage (1954/1972), and Simon (1955) all cautioned against the
notion that optimality analyses be used in real-world decision
applications. Outcome likelihoods, which can be stated precisely
in experimental settings, are typically unknown in real-world
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scenarios. For example, expert climatologists disagree on climate-
change models, the inputs to those models, and the likely impacts
of different climatic outcomes (Lempert, Nakicenovic, Sarewitz,
& Schlesinger, 2004). Because of these sources of uncertainty,
traditional decision-analytic methods for risk analysis cannot be
applied to climate-change policy. Likewise, in medical decision-
making, the prevalence of illnesses in a population is uncertain,
and the costs of misdiagnoses are difficult to express as point
values (Swets, Dawes, & Monahan, 2000). Further, in eyewitness
testimony, the base rate of guilty individuals in police lineups is
unspecified, and the consequences of different types of sentencing
errors are subjective (Wixted & Mickes, 2012). In these and other
scenarios, optimal SDT analysis is not possible.

Swets et al. (2000) expressly called for adaptive statistical pre-
diction rules, which could be trained with one population and
that would generalize well to other populations. Our technique for
quantifying robustness addresses this issue because it is applied
over distributions of values derived from systematic perturbation
across dimensions of interest. Our quantification provides a way
to predict and assess the extent to which rules (to borrow Swets’
terminology) generalize to different populations. Such generaliz-
ability is at the heart of our definition and operationalization of
robustness.

5. Discussion

Within the psychological literature, the word ‘robust’ is fre-
quently used, rarely defined, and never quantified. Cognitive
science requires sound theory and methods. Although qualitative
definitions are useful, quantification is essential to the scientific
study of cognition, generally, and robustness, specifically. Without
quantification, statements about robustness remain vague at best,
and meaningless or even misleading at worst.

The method we propose in this paper makes progress in that
direction. This method involves calculating functionality in indi-
vidual scenarios, assessing the maintenance of functionality (i.e.,
robustness) across scenarios, and measuring stability across scenar-
ios. This method produces two values: robustness, which describes
the extent to which the system maintains functionality across the
range of scenarios it is liable to encounter, and stability, which
describes the extent to which performance of the system is invari-
ant against perturbations. The ideal system is robust and stable.

Throughout this paper, we focused on the robustness of
decision-making heuristics. A growing literature indicates that
heuristics are used not only by participants in laboratory exper-
iments. Pilots use heuristics as they captain aircraft (Gigerenzer,
Hertwig, & Pachur, 2011), and judges, customs officers, doctors, and
burglars use heuristics to make consequential decisions (Dhami,
2003; Garcia-Retamero & Dhami, 2009; Marewski & Gigerenzer,
2012; Pachur & Marinello, 2013). Our method makes a substantive
contribution to this literature by proposing and demonstrating a
methodology for moving beyond the realm of semantic references
of robustness and into the realm of rigorous measurement of degree
of robustness.

The examples provided here demonstrate that decision heuris-
tics are measurably robust and stable against common sources of
variation. Additionally, by proposing formal methods and meas-
ures, we are able to conduct direct quantitative comparisons of
the degree of robustness and stability exhibited by different deci-
sion processes. In our first simulation, we found that TTB and TAL
are more robust (0.71 and 0.71, respectively) and stable (0.89 and
0.88) against variation in training set size than REGRESS (robust-
ness = 0.67; stability = 0.84). In our second simulation, we  found
that the recognition heuristic was robust (0.602) and stable (0.861)
against empirical variations in recognition rate and validity. In our

third simulation, we found that one fast and frugal tree (F&FTNS)
for diagnosing myocardial infarction was  more robust (0.904) and
stable (0.924) against variation in illness base rate and penalty
structure than three other possible trees. Importantly, the most
robust and stable heuristics did not have highest functionality in
all scenarios. But these heuristics also did not have especially low
functionality in any one scenario. A key strength of the heuristics-
based approach, then, is that these decision strategies can be used
with reasonable certainty in a variable, changing world.

Although it is a valid point, our message in this paper is not
merely that heuristic-based decision-making can be robust and
stable, and demonstrably more so than some more complex deci-
sion methods. Rather, the contribution here is that we introduced
a method for precisely quantifying degree of robustness and sta-
bility. This can serve as the foundation for moving the discourse
about robustness in applied cognitive research from qualitative
semantic dichotomies to continuously varying quantitative statis-
tics, enabling comparative analyses and informing selection of best
courses of action.

5.1. Extensions

Our approach employs an absolute measure of functionality
that takes continuous values. Related approaches from biol-
ogy and engineering also use absolute measures of performance
(Bates & Cosentino, 2011). Measures of viability, in contrast, treat
performance as a binary variable. Performance that exceeds a
pre-established threshold is classified as ‘viable’, and performance
that falls below the threshold is classified as ‘non-viable’ (Hafner,
Koeppl, Hasler, & Wagner, 2009; Larhlimi et al., 2011). Certain prob-
lems may  warrant quantification in terms of viability, as when
exceeding a certain threshold is all that matters. It is a straight-
forward extension of our approach to define functionality in those
terms, and to then compute robustness and stability (Eqs. (4) and
(5)).

Yet another, more conservative, approach is to treat robust-
ness as performance in the worst-case scenario (e.g., minimax;
Bitmore, 2009). Interestingly, in our comparative simulations, the
most robust decision rules happened to have the highest minimum
functionality scores, and the least robust decision rules happened to
have the lowest minimum functionality scores. But such agreement
is not guaranteed. Future studies should compare these approaches
to identify their relative strengths and weaknesses.

5.2. Applications

Our approach is not merely descriptive. Robustness analysis can
be used to evaluate and prescribe cognitive processes and tech-
nologies. For example, in the third simulation, we compared the
robustness and stability of four F&FTs, each of which contained dif-
ferent decision biases. A priori, it was  unclear which tree was best.
F&FTNS was  most robust and stable against variations in base rates
and penalties. This suggests that when information about the base
rates of illnesses and the consequences of actions is limited, F&FTNS
should be used to make healthcare decisions.

Note, however, that both Green and Mehr (1997) and Luan et al.
(2011) recommended the more liberal F&FTSN. Differences in their
methodologies and underlying assumptions led to this different
conclusion. Green and Mehr did not conduct a robustness analysis,
per se. They used sample data from a rural hospital to derive an F&FT
(F&FTSN), which they then presented to healthcare providers. Luan
et al. (2011) did conduct a type of robustness analysis, but with-
out formally specifying a robustness metric as we have done. Their
approach involved generating hypothetical data over variations in
cue sensitivity, cue criteria, and intercue correlations. They explic-
itly assumed lower tolerance for misses (releasing a sick individual)
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than false alarms (misdiagnosing a healthy individual), and cate-
gorically ruled out more conservative F&FTs (F&FTNN and F&FTNS).
This highlights how the selection of tolerance and dimensions of
perturbation affect the computation of robustness and stability.
These selections should be tailored to the specific problem. That
said, the differences between our conclusions and those of Green
and Mehr (1997) and Luan et al. (2011) are more apparent than real.
In the analyses presented here F&FTSN was only slightly less robust
than F&FTNS, and both were far superior to F&FTSS and F&FTNN.

Although the examples in this paper center on decision-making
heuristics, the approach is extremely general. Our quantification of
robustness can be used to formally quantify the predictive function-
ality, robustness, and stability of any mathematical, computational,
or physical model or system. For example, this methodology
may  be used to evaluate the outcomes of training and instruc-
tional interventions. Key questions for such interventions include
whether most students master knowledge, and whether knowl-
edge can be applied in new situations (Koedinger, Corbett, &
Perfetti, 2011). Thus, effective interventions must be robust against
variations among students, and effective knowledge structures
must be robust against variations in the scenarios in which they are
needed.

Taatgen, Huss, Dickison, and Anderson (2008) compared the
robustness of two sets of instructions in a complex aviation
task. The first, list instructions, contained an enumerated list of
steps. The second, context instructions, described the conditions
for carrying out each step and the results it produced. Although
participants in both conditions performed equivalently on easy
problems, participants in the list condition performed far worse
on medium and difficult problems. Formally, performance was
more robust against variation in problem difficulty in the con-
text condition than in the list condition. This and related examples
in the areas of unmanned aircraft navigation (Gunzelmann &
Gluck, 2009) and landmine detection (Staszewski, 2006), under-
score how empirical studies and computational simulations can
be used to assess the robustness of training and instructional
interventions.

5.3. Conclusion

Robustness is an important construct in domains as diverse as
evolutionary biology and structural engineering. Unfortunately, in
many domains, most relevantly cognitive science, considerations
of robustness end with vague semantic references. Our aim in this
research is to supplant qualitative definitions with a quantitative
account of robustness. We  hope these ideas will stimulate discus-
sion in the scientific community regarding robustness, and ways to
quantify it.
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