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M. J. Spivey, M. Grosjean, and G. Knoblich (2005) showed that in a phonological competitor task,
participants’ mouse cursor movements showed more curvature toward the competitor item when the
competitor and target were phonologically similar than when the competitor and target were phonolog-
ically dissimilar. Spivey et al. interpreted this result as evidence for continuous cascading of information
during the processing of spoken words. Here we show that the results of Spivey et al. need not be ascribed
to continuous speech processing. Instead, their results can be ascribed to discrete processing of speech,
provided one appeals to an already supported model of motor control that asserts that switching
movements from 1 target to another relies on superposition of the 2nd movement onto the 1st. The latter
process is a continuous cascade, a fact that indirectly strengthens the plausibility of continuous cascade
models. However, the fact that we can simulate the results of Spivey et al. with a continuous motor output
model and a discrete perceptual model shows that the implications of Spivey et al.’s experiment are less
clear than these authors supposed.
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A central issue in human information processing research is
whether processing occurs in discrete, discontinuous stages or in
cascading, continuous stages. In research on speech processing,
this issue translates to the question of whether lexical selection
occurs in continuous or in discontinuous steps as the speech stream
is being parsed. Proponents of modular models (Fodor, 1983;
Forster, 1979; Frazier & Clifton, 1996) have argued that process-
ing occurs in discrete stages such that a lexical decision is made
before further processing occurs. By contrast, proponents of con-
nectionist (McClelland & Elman, 1986; Norris, 1994) or distrib-
uted (Gaskell & Marslen-Wilson, 1997) models of speech percep-
tion have argued that spoken language processing consists of
simultaneous, continuous activation of competitor items. In this
latter view, multiple lexical representations remain partially active
throughout later stages of processing (Marslen-Wilson, 1987).

Thus, in discrete models, only a single lexical item is available at
any stage of speech processing, whereas in distributed or contin-
uous models, multiple lexical items remain available throughout
speech processing.

Much of the research concerning this debate has focused on
resolving lexical ambiguity. Relevant experimental tasks include
masked lexical priming and gating (for a review, see Jusczyk &
Luce, 2002). Recently, however, researchers have employed eye-
movement recordings to investigate this issue further. They have
recorded people’s eye movements as participants reach for one of
(typically) two items, where the names of the items begin with the
same or different phonemes (e.g., candy vs. candle or candy vs.
pickle). How the listeners look at the items as they hear the words
gives clues to the dynamics of speech perception. Thus, Magnu-
son, Tanenhaus, Aslin, and Dahan (2003) found that participants
momentarily fixated on a phonologically related distracter (e.g.,
candy when the target was called candle) when those participants
were asked to reach for the target. Magnuson et al. argued from
this result that lexical activation begins before the speech signal is
fully processed. Spivey and Marian (1999) reached a similar
conclusion using a bilingual analog of the look-and-listen proce-
dure.

More recently, Spivey, Grosjean, and Knoblich (2005) ex-
pressed concern about a particular aspect of eye-movement data
when studying lexical selection. The concern they expressed was
rooted in the fact that eye movements from one static object to
another are saccadic, meaning that the eyes move rapidly, ballis-
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tically, and almost always in a straight line. These features of
saccadic eye movements make it difficult to measure graded
responses to phonological competitors in individual trials. Grada-
tions in eye movement curvature that would be predicted from a
continuous/cascade model can only arise from averaging over
trials.

To circumvent this problem, Spivey et al. (2005) recorded
manual aiming movements. As shown in Figure 1, they used a
computer to register the continuous displacement of a computer
mouse from a start location to either of two end locations where
two pictures appeared (one at each location). The names of the
pictures were either phonologically similar, as in candle and candy
or as in picture and pickle, or the names of the pictures were
phonologically dissimilar, as in candle and picture or as in candy

and pickle. Spivey et al. referred to the former case as the cohort
condition and the latter case as the control condition.

In each trial, the participant used the mouse to position the
cursor at the start location, which was indicated by a rectangular
box near the bottom of the computer screen. The participant then
initiated the trial by clicking the mouse, which brought up the two
pictures. After the two pictures appeared, participants began mov-
ing away from the start position, and 500 ms after the pictures
appeared the computer played an audio file with the name of one
of the targets. The participant was supposed to move to the named
picture and click on it (or the box around it) with the mouse.

Spivey et al.’s (2005) main finding was that hand movements to
the targets were more curved in the cohort conditions than in the
control conditions, as shown in Figure 1. The authors took this as

Figure 1. Mean hand trajectories directed to a target on the left (A) or on the right (B) when the names of the
left and right targets were phonologically similar (cohort condition) or phonologically dissimilar (control
condition). Cohorts candy and candle are shown in the top panel. Cohorts pickle and picture are shown in the
bottom panel. Symbols are plotted every 10 normalized time slices (e.g., at the 10th, 20th, etc., percentile of the
mean movement duration). From “Continuous Attraction Toward Phonological Competitors,” by M. J. Spivey,
M. Grosjean, and G. Knoblich, 2005, Proceedings of the National Academy of Sciences, 102(29), 10393–10398.
Copyright 2005 by National Academy of Sciences, U.S.A. Reprinted with permission.
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evidence for a cascade/continuous process model, according to
which lexical competitors become activated before the speech
processing is completed. Spivey et al. summarized their results this
way:

Following from other measures of dynamic motor output revealing
temporally continuous perceptual-motor processes, our present find-
ings do more than contribute to evidence for a cascaded flow of
information from perceptual, to cognitive, to motor systems. Our
present findings virtually project the ongoing output of the language
comprehension process onto a two-dimensional action space in which
the potential goal objects act like attractor points and the manual
movement serves as a record of the mental trajectory traversed as a
result of the continuously updated interpretation of the linguistic
input. (p. 10398)

Cascade/Continuous Motor Output

Do the data of Spivey et al. (2005) necessarily support the model
they endorsed? In the remainder of this commentary, we argue that
they do not. It should be noted that we do not intend to take a
stance in the debate over discrete versus continuous speech pro-
cessing. Our aim in presenting this argument is not to impugn
cascade/continuous processing but rather to suggest that the evi-
dence presented by Spivey et al. for such processing is less
ironclad than these authors supposed. We show that a discrete
processing model can also account for Spivey et al.’s data, pro-
vided one ascribes cascade/continuous processing to motor output.
As reviewed below, such cascade/continuous motor processing has
been demonstrated for targeted hand movements (Flash & Henis,
1991; Henis & Flash, 1995). Of central importance for our argu-
ment, the main features of the data reported by Spivey et al. can be
simulated with a model that relies on cascade/continuous motor
output and discrete rather than cascade/continuous perceptual in-
put. The motor control model used for our simulations (Flash &
Henis, 1991; Henis & Flash, 1995) is just one motor control model
that could serve this purpose. Other models that share features with
the motor control model we used might work equally well.

The Movement Superposition Model of Henis and Flash
(1995)

Evidence for cascade/continuous motor processing was pro-
vided by Henis and Flash (1995). These authors studied hand
movements to one or two visually presented targets. In their
experiment, Henis and Flash had participants make horizontal
planar arm movements with the right hand, displacing a stylus
from a start location to a target location. In the control trials (40%
of the trials), a single target location appeared and participants
were supposed to make direct movements to that target. In the
experimental trials (60% of the trials), the first target was extin-
guished and was replaced by a different target shown at either of
two equally likely locations after an interstimulus interval of
10–300 ms. When the second target appeared, the participants’
task was to move to that target only. Whether one target or two
targets would appear was unpredictable.

Henis and Flash (1995) found that the curvature of movements
to the second target depended on when the second target appeared
relative to the hand’s motion toward the first target. We will not
review the findings of Henis and Flash (1995) in detail here.

Instead, we emphasize that their main conclusion was that they
could best account for their findings with a movement superposi-
tion model. According to the model, two independent movements
simply add together in a way that depends on the timing of the
second target relative to the hand’s movement away from the start
position. One movement corresponds to the initially planned dis-
placement from the start position (A) to the first target (B). The
second movement corresponds to the displacement from the first
target (B) to the second target (C). How the movements add—
where in the movement from A to B the movement from B to C is
added—depends on the timing of the second target relative to the
motion of the hand away from the home position.1

Henis and Flash’s (1995) model is a cascade/continuous model
par excellence. Furthermore, it is important to note that Henis and
Flash rejected an alternative abort–replan model according to
which participants aborted the first movement if a second target
came on and planned a second movement to the second target.
Henis and Flash rejected this alternative model based on detailed,
sophisticated analyses of their participants’ hand movements. The
rejected abort–replan model is a discrete processing model,
whereas the accepted superposition model is a cascade/continuous
model.

Simulating the Data of Spivey et al. (2005) With the
Movement Superposition Model of Henis and Flash
(1995)

We now ask whether the data of Spivey et al. (2005) can be
simulated by relying on the superposition model of Henis and
Flash (1995). If such a simulation can be achieved without invok-
ing a continuous/cascade process for perception, the results of
Spivey et al. need not be ascribed to continuous/cascade perceptual
processing.

To apply the superposition model to Spivey et al.’s (2005)
phonological competitor task, we used a well-known equation in
motor control research, developed by Flash and Hogan (1985).
This equation defines a “minimum jerk” trajectory from one point
to another. Such a trajectory is characterized by a bell-shaped
speed profile whose precise form minimizes the sum of the
squared rates of change of acceleration (jerk) over the duration of
the movement. Using this equation, we defined the in–out com-
ponent of the first movement as

y(t) � ys � (ym � ys)(�1T
3 � �2T

4 � �3T
5), (1)

where ys corresponds to the y value of the start position, ym

corresponds to the y value of the midpoint between the two targets
in the Spivey et al. display, T � t/tf is the ratio of each time t
divided by the final time, tf, and the three coefficients of the
polynomial have values used by Henis and Flash (1995) based on
earlier work by Flash and Hogan (1985): �1 � 10, �2 � 15, and

1 Henis and Flash (1995) also distinguished between averaged and
nonaveraged initial movement trajectories. Averaged trajectories, which
result from rapid target displacement, initially approach a point between
the location of the first and the second target. Conversely, nonaveraged
trajectories, which result from later target displacement, initially approach
the first target. The late spoken-word onset used in Spivey et al.’s task
would produce nonaveraged trajectories. These are the type we simulated.
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�3 � 6. We assumed that the horizontal component of the first
movement was based on the same equation as (1), replacing x for
y, but with xm – xs � 0, so that x(t) � 0 for all t. For the second
movement, there was no y displacement because this movement,
by hypothesis, was from the midpoint between the targets to the
selected target. We defined the second movement’s x displacement
analogously to equation (1):

x(t) � xm � (xr � xm)(�1T
3 � �2T

4 � �3T
5), (2)

where xm corresponds to the x value of the midpoint between the
two targets, xr corresponds to the x value of the selected target, and
the other terms are the same as before. We added the x vectors of
the first and second moves and the y vectors of the first and second
moves, allowing for different delays between the two moves.
When the first and second moves overlapped, we summed the
corresponding values of each. When the moves did not overlap, the
first or the second movement vector contributed uniquely to the
superposed trajectory.

We simulated 1,200 trials for the cohort condition and 1,200
trials for the control condition, assuming that the second move
started later in the cohort condition than in the control condition.
This assumption was compatible with any discrete perceptual
model that allows longer discrimination times for dissimilar as
opposed to similar alternatives. We selected 33% and 55% as the
normalized times at which the second movement was initiated in
the control and cohort conditions, respectively. These values fol-
low from features of Spivey et al.’s task and data. In their task, the
spoken word came on 500 ms after the picture pair was presented,
and the spoken word duration was 532 ms. Word discrimination in
the control condition occurred around 800 ms after word onset.
Word discrimination in the cohort condition occurred around 1,150
ms after word onset. By subtracting the observed movement ini-
tiation time of 345 ms from these estimated word discrimination

times, we could calculate discrimination time with respect to
movement initiation time. These values were 455 ms and 805 ms
in the control and cohort conditions, respectively. Finally, by
dividing the latter times by the observed movement durations of
1,360 ms and 1,477 ms in the control condition and cohort con-
dition, respectively, we arrived at the normalized times at which
the second movement was initiated: 455 ms/1,360 ms � .33 for the
control condition, and 805 ms/1,477 ms � .55 in the cohort
condition.

We applied Gaussian noise (� � 0, �2 � 3.5) to the start time
of the second movement, as well as independent vectors of
Gaussian noise (� � 0, �2 � .1) to the x and y components of
the first and second movements. The purpose of this noise,
which did not affect the mean x and y movement components,
was to generate a continuous distribution of movement curva-
tures. The way we calculated movement curvatures for our
simulated trajectories was the same as that used by Spivey et al.
We calculated the area between each individual simulated tra-
jectory and a straight line connecting the individual trajectory’s
start and endpoint.

The resulting trajectory simulations, shown in Figure 2, are
similar to the data of Spivey et al. (Figure 1). We did not try to
identify parameters that would give us the best fit of the model
data to the actual data. The comparisons we sought were only
qualitative.

We also studied the Euclidian proximity of the cursor to the
ultimately selected target and to the distracter, just as Spivey et al.
(2005) did. Their results are shown in the top panel of Figure 3,
and our simulated results are shown in the bottom panel of Fig-
ure 3. For the simulated data, as for the real data, the Euclidian
proximity to the distracter and to the target items diverged more
quickly in the control condition than in the cohort condition. In the
control condition, where the second move started early, the diver-

Figure 2. Simulated movement trajectories produced by the movement superposition model. Black circles
correspond to simulations with early second move onsets (control trials in phonological competitor task), and
white circles correspond to simulations with late second move onsets (cohort trials).
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gence of the Euclidian proximity points reached statistical signif-
icance 43% of the way into the total movement time. In the cohort
condition, where the second move started late, the divergence of
the Euclidian proximity points reached statistical significance 65%
of the way into the total movement time. Qualitatively, then, our
simulation data were similar to those of Spivey et al.

The predicted Euclidian proximities differ from the observed
data in one regard, however. In the observed data, Euclidian
proximities appear to be concave down during the first 40% of
movement. Conversely, the graphs of our simulated data are con-
cave up during this portion of movement. This subtle difference
likely relates to the shape of participants’ velocity profiles. If
participants reached peak velocity shortly after movement onset
and then continued moving at a sustained, low velocity while
waiting for word presentation, the observed patterns in Euclidian
proximity would occur. Because Flash and Hogan’s (1985) mini-
mum jerk model uses a bell-shaped velocity profile, our simula-
tions do not capture this nuance.

Finally, we turned to another measure from Spivey et al. (2005),
the distribution of movement curvature values in the cohort con-
dition. Spivey et al. were careful to check that the high movement
curvature they observed when picture name alternatives were
phonologically similar was not just an artifact of mixing very
low-curve moves with very high-curve moves. Very low-curve
moves could emerge if there were no competing lexical activation
of the foil (nontarget item) to the target. Very high-curve moves
could occur if participants arrived at, or nearly arrived at, the foil
location and then turned to the target location, having temporarily
misinterpreted the spoken word as referring to the foil. These very
low-curve and very high-curve moves could arise from a discrete
processing system, and if the two curvature distributions were
mixed appropriately, they could give rise to an average trajectory
whose curvature spuriously supported cascade/continuous process-
ing.

As shown in the top panel of Figure 4, Spivey et al. (2005) could
reject this mixture hypothesis. The distribution of curvatures ob-

Figure 3. Euclidian proximity to distracter and target items, as observed by Spivey et al. (2005; top panel) and
as simulated with the movement superposition model (bottom panel). Top panel and legend of graph in bottom
panel from “Continuous Attraction Toward Phonological Competitors,” by M. J. Spivey, M. Grosjean, and G.
Knoblich, 2005, Proceedings of the National Academy of Sciences, 102(29), 10393–10398. Copyright 2005 by
National Academy of Sciences, U.S.A. Reprinted with permission.
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tained in their cohort condition was not bimodal, contrary to the
mixture hypothesis. Rather, the distribution of curvatures obtained
in their cohort condition was unimodal, as predicted by the cas-
cade/continuous model. Moreover, the curvature distribution was
normal in both the cohort and the control conditions.

The bottom panel of Figure 4 shows that our simulated data look
much the same. As expected, curvatures of our simulated trajec-
tories were greater with late onset second moves than with early
onset second moves (�1 � 54.3, �2 � 78.6, p � .001). When we
normalized the distributions of movement curvatures separately
for each condition, as Spivey et al. (2005) did (top panel of Figure
4), we found results like those of Spivey et al. Consistent with
Spivey et al., the distribution of curvature in the early onset
condition (M � 0, variance � 1, kurtosis � .26, skewness � �.16)
did not differ significantly from the distribution of curvature in the

late onset condition (M � 0, variance � 1, kurtosis � .12,
skewness � �.13), and neither distribution deviated from normal-
ity as evaluated with the Kolmogorov-Smirnov test (both p 	 .15),
as found by Spivey et al.

Conclusions

This commentary has been meant to show that a conclusion
reached by Spivey et al. (2005) in their phonological competitor
task may have been premature. Spivey et al. said their “findings
virtually project the ongoing output of the language comprehen-
sion process . . . as a result of the continuously updated interpre-
tation of the linguistic input” (p. 10398). We share the excitement
over the prospect of an external projection of the language com-
prehension process, but we do not share Spivey et al.’s confidence
that their data necessarily implied continuous updating of linguis-
tic input. As shown here, Spivey et al.’s data can also be explained
with a discrete perceptual process coupled with a continuous motor
process.

Does this outcome imply that the measurement of hand move-
ments in phonological competitor tasks can serve no useful pur-
pose for drawing inferences about the dynamics of speech percep-
tion? We think not. One possibility for future research using cursor
movement data would be to estimate the time at which the second
movement is initiated for existing movement data as well as for
data from future experiments in which differences between the
cohort and control conditions are manipulated. Such an elaboration
could provide a more fine-grained understanding of the dynamics
of speech perception.

To prepare this commentary, we relied on a model developed by
Henis and Flash (1995) to account for hand movements that those
authors observed in an experiment that was very different from the
experiment of Spivey et al. (2005). Henis and Flash used punctate
visual stimuli (light-emitting diodes beneath a glass surface) to
specify targets; Spivey et al. used spoken words. Henis and Flash
had participants move a stylus from point to point; Spivey et al.
had participants move a mouse to displace a cursor on a computer
screen. Henis and Flash had clearly defined targets for first moves;
Spivey et al. did not. All of these differences make it unclear
whether Henis and Flash’s model of movement superposition
necessarily applies to Spivey et al.’s task. If it does not, this would
mean that Spivey et al. could be right that their hand movement
data implicate cascade/continuous processing. However, if the
movement superposition model of Henis and Flash did not apply to
the phonological competition task, one would wonder why.

Clearly, what is needed is some way of ascertaining how suc-
cessive movements are coordinated in the phonological competitor
task. Toward this aim, it will be useful in future research to clearly
define the target of the first movement to be made as well as the
time for that first movement to be completed. It will also be useful
to vary the nature of the stimuli to be discriminated, letting their
discriminability differ in graded ways over time so that, even if
successive movements do superpose as Henis and Flash suggested,
the dynamics of that superposition may depend on the nature of the
perceptual discriminations to be made. The nature of that depen-
dency might reveal whether and how the discriminations are made
discretely or continuously. More work remains to be done, then, on
this difficult problem for which Spivey et al. offered a promising
new approach.

Figure 4. Overlaid histograms of movement curvatures observed by
Spivey et al. (2005; top panel) and derived from our simulations (bottom
panel). Black lines correspond to trials with early second move onsets.
Gray bars and lines correspond to trials with late second move onsets. Top
panel from “Continuous Attraction Toward Phonological Competitors,” by
M. J. Spivey, M. Grosjean, and G. Knoblich, 2005, Proceedings of the
National Academy of Sciences, 102(29), 10393–10398. Copyright 2005 by
National Academy of Sciences, U.S.A. Reprinted with permission.

593OBSERVATIONS



References

Flash, T., & Henis, E. (1991). Arm trajectory modifications during reach-
ing towards visual targets. Journal of Cognitive Neuroscience, 3(3),
220–230.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: An
experimentally confirmed mathematical model. Journal of Cognitive
Neuroscience, 5, 1688–1703.

Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.
Forster, K. (1979). Levels of processing and the structure of the language

processor. In W. E. Cooper & E. C. T. Walker (Eds.), Sentence pro-
cessing: Psycholinguistic studies presented to Merrill Garrett (pp. 27–
85). Hillsdale, NJ: Erlbaum.

Frazier, L., & Clifton, C. (1996). Construal. Cambridge, MA: MIT Press.
Gaskell, M. G., & Marslen-Wilson, W. D. (1997). Integrating form and

meaning: A distributed model of speech perception. Language and
Cognitive Processes, 12, 613–656.

Henis, E. A., & Flash, T. (1995). Mechanisms underlying the generation of
averaged modified trajectories. Biological Cybernetics, 72, 407–419.

Jusczyk, P., & Luce, P. A. (2002). Speech perception and spoken word
recognition: Past and present. Ear & Hearing, 23, 1–40.

Magnuson, J. S., Tanenhaus, M. K., Aslin, R. N., & Dahan, D. (2003). The
time course of spoken word learning and recognition: Studies with
artificial lexicons. Journal of Experimental Psychology: General, 132,
202–227.

Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word
recognition. Cognition, 25, 71–102.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech
perception. Cognitive Psychology, 18, l–86.

Norris, D. (1994). Shortlist: A connectionist model of continuous speech
recognition. Cognition, 52, 189–234.

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction
toward phonological competitors. Proceedings of the National Academy
of Sciences, 102(29), 10393–10398.

Spivey, M., & Marian, V. (1999). Cross talk between native and second
languages: Partial activation of an irrelevant lexicon. Psychological
Science, 10, 281–284.

Received October 22, 2007
Revision received February 28, 2008

Accepted March 9, 2008 �

594 OBSERVATIONS


