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Electrophysiological Responses to Feedback during the
Application of Abstract Rules
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Abstract

■ Much research focuses on how people acquire concrete
stimulus–response associations from experience; however, few
neuroscientific studies have examined how people learn about
and select among abstract rules. To address this issue, we re-
corded ERPs as participants performed an abstract rule-learning
task. In each trial, they viewed a sample number and two test
numbers. Participants then chose a test number using one of three
abstract mathematical rules they freely selected from greater
than the sample number, less than the sample number, or equal
to the sample number. No one rule was always rewarded, but
some rules were rewarded more frequently than others were. To
maximize their earnings, participants needed to learn which
rules were rewarded most frequently. All participants learned to

select the best rules for repeating and novel stimulus sets that
obeyed the overall reward probabilities. Participants differed,
however, in the extent to which they overgeneralized those
rules to repeating stimulus sets that deviated from the overall
reward probabilities. The feedback-related negativity (FRN),
an ERP component thought to reflect reward prediction error,
paralleled behavior. The FRN was sensitive to item-specific re-
ward probabilities in participants who detected the deviant stim-
ulus set, and the FRN was sensitive to overall reward probabilities
in participants who did not. These results show that the FRN is
sensitive to the utility of abstract rules and that the individualʼs
representation of a taskʼs states and actions shapes behavior as
well as the FRN. ■

INTRODUCTION

Psychologists have long recognized the role of experience
in learning. Thorndike (1911) famously articulated this
idea in the law of effect: Humans and animals tend to
repeat actions that have produced positive outcomes,
and they tend to avoid actions that have produced nega-
tive outcomes. Thorndike first demonstrated the law of
effect by placing a cat in a puzzle box that contained a
lever. The lever opened a door, which released the cat
from the box. Although the feline initially performed
many ineffective actions, it quickly learned to press the
lever to escape. The simplicity of Thorndikeʼs law belies
the complexity of behaviors that individuals learn from
experience. In addition to forming associations that map
specific stimuli to responses, we acquire abstract principles
from experience. These principles allow us to respond to
familiar and novel stimuli alike. For example, mathematical
operations such as addition and multiplication are applica-
ble to studied and arbitrary number pairs as well as to
alphabetic variables. Although the ability to generalize
rules from experience is central to intelligent behavior,
few neuroscientific studies have examined how humans
learn about and choose among such abstract rules.
The psychological literature contains several definitions

of abstraction (for a review, see Bunge & Wallis, 2008).

Common to these definitions are the ideas that abstract
rules map multiple stimuli to responses, that abstract
rules are not bound to exemplar knowledge, and that
abstract rules are applicable to novel stimuli and in novel
contexts. Here, we define abstraction in terms of relational
integration (Badre & DʼEsposito, 2009; Ramnani & Owen,
2004; Kroger et al., 2002). Concrete rules depend on
first-order relational integration, which involves assign-
ing a property to an item. For example, is the sample
stimulus red, or is the sample number five? Abstract rules
depend on second- or higher-order relational integration,
which involves assigning relations between properties of
items. For example, do the colors of the test and sample
stimuli match, or does the value of the test number exceed
the value of the sample number?

Abstract Rule Use

The pFC is thought to represent rules and their asso-
ciated contexts (Passingham, 1993). In support of this
idea, neurophysiological studies have found that pFC
neurons encode the sensory dimension or task set that
actively governs mappings between stimuli and responses
(Yamada, Pita, Iijima, & Tsutsui, 2010; Mansouri, Matsumoto,
& Tanaka, 2006; Asaad, Rainer, & Miller, 2000; White &
Wise, 1999). When the relevant sensory dimension or task
set changes, so too does the subset of active pFC neu-
rons. pFC neurons also encode abstract rules and strategies
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(Bongard & Nieder, 2010; Muhammad, Wallis, & Miller,
2006; Genovesio, Brasted, Mitz, & Wise, 2005; Wallis &
Miller, 2003; Wallis, Anderson, & Miller, 2001). For example,
in the match-to-sample task, an individual must select test
stimuli that are identical to or different from the sample
stimulus. Heterogeneous populations of pFC neurons
respond depending on whether thematch or nonmatch rule
is in effect. Complementing these results, lesion studies
have demonstrated that ablation of pFC regions in animals
eliminates rule-guided behavior while leaving other types
of responses intact (Baxter, Gaffan, Kyriazis, & Mitchell,
2009; Gaffan, Easton, & Parker, 2002; Bussey, Wise, &
Murray, 2001; Dias, Robbins, & Roberts, 1996). Likewise,
pFC damage selectively impairs rule-guided behavior in
humans (Shallice & Burgess, 1991; Milner, 1963).

Neuroimaging studies have further contributed to our
understanding of the neural basis of rule use (for reviews,
see Schneider & Logan, 2009; Bunge, 2004). These studies
detail a gradient of abstraction along the rostro-caudal axis
of pFC, with progressively anterior regions representing
increasingly abstract responses (Badre & DʼEsposito,
2009; Koechlin & Summerfield, 2007; Christoff & Gabrieli,
2000). At a concrete level, simple conditional motor and
response selection tasks activate the dorsal motor and
premotor cortex (Badre & DʼEsposito, 2007; Picard &
Strick, 2001). At a more abstract level, tasks that require
identifying relationships among stimuli engage more ante-
rior lateral pFC regions (Badre & DʼEsposito, 2007; Bunge,
Kahn, Wallis, Miller, & Wagner, 2003). At a still more ab-
stract level, tasks that necessitate simultaneously integrating
multiple relationships among stimuli activate the fronto-
polar cortex (Bunge, Wendelken, Badre, & Wagner, 2005;
Christoff, Ream, Geddes, & Gabrieli, 2003). Thus, tasks
that engender the greatest relational complexity recruit the
anterior extent of pFC.

Concrete Stimulus–Response Associations

Research on the use of abstract rules has proceeded largely
independently of work on the incremental acquisition
of stimulus–response associations. Whereas the former
emphasizes the involvement of pFC in behavioral control,
the latter focuses on the role of dopamine in reward learn-
ing (Berridge, 2007). In a series of studies, Schultz and
colleagues demonstrated that the phasic response of
dopamine neurons mirrored a reward prediction error
signal (Schultz, 1998). When a reward was unexpectedly
delivered, neurons showed enhanced activity. When a
conditioned stimulus preceded reward, however, neurons
no longer responded to reward delivery. Rather, they
responded to the earlier conditioned stimulus. Finally,
when a reward was unexpectedly omitted, dopamine
neurons showed depressed activity at the expected time
of reward delivery. These results demonstrate that the
responses of dopamine neurons depend on differences
between actual and expected outcomes or reward predic-
tion errors.

Neuroimaging experiments have since extended these
results to humans. BOLD responses in the BG, a collection
of structures innervated by dopamine neurons, mirror re-
ward prediction errors (McClure, York, & Montague, 2004;
OʼDoherty, 2004). These findings have given rise to the
idea that dopamine neurons compute prediction errors.
The BG use these prediction errors to modify the strength
of stimulus–response associations (Packard & Knowlton,
2002). Positive prediction errors strengthen associations,
ensuring that the individual repeats those responses in
the future, and negative prediction errors weaken associa-
tions, ensuring that the individual avoids those responses
in the future.

The Feedback-related Negativity

Studies using scalp-recorded ERPs have also been informa-
tive with respect to this issue. ERP studies of reward learn-
ing have revealed a frontocentral negativity that emerges
from 200 to 400 msec after negative feedback (Miltner,
Braun, & Coles, 1997). This feedback-related negativity
(FRN) sometimes appears as a negative deflection follow-
ing losses and sometimes as a positive deflection following
wins (Holroyd, Pakzad-Vaezi, & Krigolson, 2008). Several
features of the FRN indicate that it reflects a reward pre-
diction error signal (Walsh & Anderson, 2012). First, the
FRN is sensitive to violations of reward probability and
magnitude (Walsh & Anderson, 2011a, 2011b; Holroyd,
Nieuwenhuis, Yeung, & Cohen, 2003). Second, FRN am-
plitude correlates with posterror behavioral adjustment
(Cohen & Ranganath, 2007). Third, source localization
studies (Gehring & Willoughby, 2002; Miltner et al., 1997),
single cell recordings (Ito, Stuphorn, Brown, & Schall,
2003; Niki & Watanabe, 1979), and neuroimaging ex-
periments (Holroyd et al., 2004) indicate that the FRN
originates in the ACC, a region involved in integrating
reward history to guide action selection.
These ideas underlie the reinforcement learning theory

of the error-related negativity (Holroyd & Coles, 2002).
According to this theory, the dopamine system monitors
outcomes to determine whether things have gone better
or worse than expected. Positive prediction errors induce
phasic increases in dopamine firing rates, and negative
prediction errors induce phasic decreases in dopamine
firing rates. Dopamine neurons convey error signals to
the BG where they are used to revise expectations. Dopa-
mine neurons also convey error signals to cortical struc-
tures such as the anterior cingulate where they are used
to integrate reward information with action selection.
The scalp-recorded FRN reflects the impact of dopamine
signals on neurons in the anterior cingulate. Phasic de-
creases in dopamine activity yield a more negative FRN,
and phasic increases in dopamine activity yield a less
negative FRN.
Although the FRN has been the focus of many studies

(for a review, see Walsh & Anderson, 2012), nearly all
involve the acquisition of concrete stimulus–response
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associations. For example, in one of the earliest reports
of the FRN, participants responded to a visual stimulus
with a left or a right button press (Holroyd & Coles,
2002). In this and subsequent experiments, the mapping
between stimuli and responses was arbitrary. Conse-
quently, participants learned each stimulus–response
association separately and could not generalize responses
to novel stimuli. In an experiment that did permit gen-
eralization, participants categorized visual stimuli that
varied along multiple dimensions (Krigolson, Pierce,
Holroyd, & Tanaka, 2009). The probabilistic relationship
between dimensional values and category membership
determined the mapping between stimuli and responses.
Consequently, participants could respond correctly to
novel stimuli. Although this experiment permitted gen-
eralization, participantsʼ responses may or may not have
depended on relational integration, which is the concern
of this article. When interactions among multiple stimulus
dimensions define category membership, as in Krigolson
et al.ʼs (2009) experiment, people do not use explicit rules
to compare stimulus dimensions against critical values
(Ashby & OʼBrien, 2005); rather, they form graded repre-
sentations that map the perceptual space to responses.

Overview of Present Research

Abstract rules and concrete stimulus–response associa-
tions likely draw on partially overlapping neural structures.
However, three differences in the paradigms used to
study these types of responses obscure their similarities.
First, most studies of rule use focus on asymptotic per-
formance, whereas most studies of stimulus–response
associations focus on learning. Second, most rule tasks
employ deterministic rewards, whereas most stimulus–
response association tasks employ probabilistic rewards.
Third, most studies of rule use report tonic neural signals
that appear before or in concert with rule application,
whereas most studies of stimulus–response associations
report phasic neural signals evoked by outcomes or
feedback-related events.
The present research borrows elements from both

types of paradigm. We asked participants to select among
three abstract mathematical rules that were probabilisti-
cally rewarded. Mathematical principles operate on vari-
able numerical quantities rather than fixed sensory
stimuli. As such, mathematical principles can be used to
study abstract rule use. In each trial, we presented par-
ticipants with one sample number and two test numbers
(Figure 1). Participants chose a test number using one
of three abstract mathematical rules they freely selected
from: greater than the sample number, less than the
sample number, or equal to the sample number. No rule
was always rewarded, but some rules were rewarded more
frequently than others were. To maximize their earnings,
participants needed to learn which rules were rewarded
most frequently.

Some configurations of sample and test numbers
repeated in 225 trials. In these “standard” trials, the
globally optimal rule was rewarded most frequently.
Participants could respond correctly using concrete
stimulus–response associations (i.e., “Choose three
because three has been rewarded”) or abstract rules
(i.e., “Choose the test number that is greater than the
sample”).1 Other configurations of sample and test
numbers appeared only once. In these “novel” trials,
the globally optimal rule was rewarded most frequently.
Participants could only respond correctly using abstract
rules. Still other configurations of sample and test num-
bers repeated in 225 trials but deviated from the overall
reward probabilities. In these “deviant” trials, the glob-
ally optimal rule was rewarded less frequently than the
globally suboptimal rule. Participants could respond
correctly using concrete stimulus–response associa-
tions. Participants could also respond correctly using
abstract rules, although doing so required that they
not overgeneralize knowledge from standard and novel
trials.2 We analyzed choice data to determine whether
participants used abstract rules, concrete stimulus–
response associations, or both. We also modeled their
behavior to address the question of whether individ-
uals learn about the utility of abstract rules in the
same way that they acquire concrete stimulus–response
associations.

Besides studying overt behavior, we used ERPs to ex-
plore how people learn about and choose among abstract
rules. The reinforcement learning theory of the error-
related negativity permits the FRN (and by extension,
the anterior cingulate) a role in the acquisition of con-
crete stimulus–response associations and abstract rules
(Holroyd & Coles, 2002). Although studies have demon-
strated the role of the FRN in the formation of concrete

Figure 1. Trial procedure. Participants viewed a sample number at the
center of the screen. Two test numbers appeared beside the sample
number. After participants selected a test number, feedback appeared.

Walsh and Anderson 3
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stimulus–response associations, no study has yet exam-
ined the involvement of the FRN in the use of abstract
rules. To that end, we asked whether negative feedback
would evoke an FRN as participants chose among abstract
response rules. We expected that the FRN would reflect
reward probabilities in standard trials: Abstract rules and
concrete associations were both applicable in such trials.
If the FRN were sensitive to the utility of abstract rules,
the FRN would also reflect reward probabilities in novel
trials where abstract rules alone were applicable. Fur-
thermore, if participants overgeneralize abstract rules to
deviant items, the FRN would reflect overall reward prob-
abilities rather than item-specific reward probabilities in
deviant trials. Alternatively, if the FRN were only sensitive
to the utility of concrete stimulus–response associations,
the FRN would not reflect reward probabilities in novel
trials where there was no opportunity to form concrete
associations. Additionally, the FRN would reflect item-
specific reward probabilities rather than overall reward
probabilities in deviant trials.

EXPERIMENT 1

Methods

Participants

Fourteen graduate and undergraduate students partici-
pated on a paid volunteer basis (seven men and seven
women, ages ranging from 19 to 31 years with a mean
age of 23 years). All were right-handed, and none reported
a history of neurological impairment.

Procedure

At the start of each trial, a sample number appeared at the
center of the screen. Two test numbers appeared beside
the sample number (Figure 1). Participants pressed a key
bearing a left arrow to select the test number on the left,
and they pressed a key bearing a right arrow to select the
test number on the right. They used their left and right
index fingers to make selections. The selected number
turned green. Participants had 2,000 msec to respond. If
they failed to respond within 2,000 msec, both numbers
turned red.
Participants selected among three rules that were

based on the relationship between the values of the
test numbers and the sample number: greater than—
the test number was greater than the sample number;
less than—the test number was less than the sample
number; and equal to—the test number was equal to
the sample number. Participants were informed about
the significance of the relationship between the values
of the test numbers and the sample number. They were
told, “Use the feedback to learn whether it is best to
select test numbers that are greater than the sample
number, less than the sample number, or equal to the
sample number.” Positive feedback signifying reward
was denoted by $, negative feedback signifying no re-
ward was denoted by X, and missed responses were
denoted by !.
The sample and test numbers defined the stimulus

sets (Figure 2). The experiment contained two standard
sets that repeated in 225 trials each, 450 novel sets that
appeared in one trial each, and one deviant set that

Figure 2. Example of a
standard stimulus set appearing
in three trials (left). In each
trial, the sample number is
fixed and two test numbers are
drawn from a pool of three
test numbers. Example of three
novel stimulus sets appearing
in three trials (center). Sample
and test numbers are unique
in each trial. Example of the
deviant stimulus set appearing
in three trials (right). In each
trial, the sample number is
fixed and two test numbers
are drawn from a pool of
three test numbers.
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repeated in 225 trials (Table 1). For standard and novel
sets, the globally optimal rule was rewarded with 75%
probability and the globally suboptimal rule was re-
warded with 25% probability. For the deviant set, these
probabilities reversed (i.e., the globally optimal rule was
rewarded with 25% probability and the globally sub-
optimal rule was rewarded with 75% probability). Par-
ticipants learned these probabilities from experience.
Greater than and less than were randomly assigned
as globally optimal and suboptimal rules across partici-
pants and in a counterbalanced manner, and equal to
was never rewarded.3

The experiment contained 1125 trials. In each trial,
the inclusion of two test numbers allowed participants
to select from two rules. This yielded three choice pairs
of reward probabilities (75/25, 75/0, 25/0) that occurred
with equal frequency. For example, the test numbers
in the top row of Figure 2 permit choice between less
than and greater than, the test numbers in the middle
row permit choice between greater than and equal
to, and the test numbers in the bottom row permit
choice between equal to and less than. Although no
rule was rewarded with 100%, participants could maxi-
mize pay by selecting the rule that was rewarded most
often within each pair. For standard and novel sets,
this meant selecting the globally optimal rule in two
cases (75/25 and 75/0) and the globally suboptimal
rule in one case (25/0). For deviant sets, this meant
selecting the globally suboptimal rule in two cases
(75/25 and 25/0) and the globally optimal rule in one
case (75/0).
Stimuli were drawn from the numbers 1 to 99. Numbers

assigned to the standard and deviant sets appeared only
within those sets (Figure 2). The remaining numbers were
assigned to the novel sets. Although numbers necessarily
repeated within novel sets, no combination of test num-
bers or of test and sample numbers repeated.
Participants completed 30 practice trials before be-

ginning the main experiment. To prevent participants
from learning about the utility of rules used in the ex-
periment prematurely, we instructed them to select
between two different rules during practice: odd (the
value of the test number is odd) and even (the value
of the test number is even). The rules were rewarded
with 75% probability and 25% probability and were
counterbalanced across participants. Participants were told

that these rules no longer applied once the experiment
began.

EEG Recording and Analysis

Participants sat in an electromagnetically shielded booth.
Stimuli appeared on a CRT monitor placed behind radio
frequency shielded glass and set 60 cm from partici-
pants. The EEG was recorded from 32 Ag-AgCl sintered
electrodes (10–20 system). Electrodes were also placed
on the right and left mastoids. The right mastoid served
as the reference electrode, and scalp recordings were
algebraically re-referenced off-line to the average of the
right and left mastoids. The vertical EOG was recorded
as the potential between electrodes placed above and
below the left eye, and the horizontal EOG was recorded
as the potential between electrodes placed at the exter-
nal canthi. The EEG and EOG signals were amplified by
a Neuroscan bioamplification system with a bandpass of
0.1–70.0 Hz and were digitized at 250 Hz. Electrode
impedances were kept below 5 kΩ.

The EEG recording was decomposed into indepen-
dent components using the EEGLAB infomax algorithm
(Delorme & Makeig, 2004). Components associated with
eye blinks were visually identified and projected out of
the EEG recording. Epochs of 850 msec (including a
200-msec baseline) were then extracted from the con-
tinuous recording and corrected over the prestimulus
interval. Epochs containing voltages above +75 μV or
below −75 μV were excluded from further analysis
(<9% epochs).

We created feedback-locked ERPs for trials where
participants selected the 75 rule or the 25 rule. A series
of paired t tests revealed that neural responses only
depended on the selected rule and not the choice pair
in which it appeared (i.e., neural responses after the
75 rule did not depend on whether it appeared with
the 25 rule or the 0 rule and neural responses after the
25 rule did not depend on whether it appeared with
the 75 rule or the 0 rule). Consequently, we excluded
the factor of choice pair from further ERP analyses. The
P300, an endogenous ERP component evoked by stim-
ulus presentation, is sensitive to event probabilities
(Duncan-Johnson & Donchin, 1977). To isolate the ef-
fects of outcome likelihood on the FRN from the effects
of outcome likelihood on the P300, we adopted the

Table 1. Stimulus Sets and Reward Probabilities

Stimulus Sets Trials per Set

Reward Probability (%)

Optimal Suboptimal Equal to

Standard 2 225 75 25 0

Novel 450 1 75 25 0

Deviant 1 225 25 75 0

Walsh and Anderson 5
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difference wave approach prescribed by Holroyd, Krigolson,
Baker, Lee, and Gibson (2009), and we compared losses
and wins that were equally likely (see also Luck, 2005). We
created a probable outcome difference wave (losses after
25 rule − wins after 75 rule) and an improbable outcome
difference wave (losses after 75 rule − wins after 25 rule).
We measured the FRN as the mean voltage of the differ-
ence waves from 240 to 400 msec after feedback onset.
We analyzed data from three midline sites (FCz, Cz, and
CPz), and we applied the Greenhouse–Geisser correction
when factors had more than two levels.

Results

Behavioral Results

Participants favored the 75 rule from the 75/25 and 75/0
pairs, and they favored the 25 rule from the 25/0 pair (Fig-
ure 3). A 3 (trial type: standard, novel, deviant) × 3 (rule
pair: 75/25, 75/0, 25/0) repeated-measures ANOVA re-
vealed main effects of trial type, F(2, 26) = 7.690, p <
.01, and rule pair, F(2, 26) = 11.454, p < .001. Participants
were somewhat more likely to select the globally best
rules in standard and novel trials than in deviant trials,
and they were far more likely to select the globally best
rules in trials with the 75/25 and 75/0 pairs than in trials
with the 25/0 pair. The interaction between trial type and
rule pair was also significant, F(4, 52) = 3.253, p < .05.
Selection of the 75 rule from the 75/25 pair maximized
the probability of reward in standard and novel trials but
minimized the probability of reward in deviant trials.
Accordingly, participants were somewhat less likely to
choose the 75 rule from the 75/25 pair in deviant trials as
compared with standard trials, t(13) = 2.260, p < .05, and
novel trials, t(13) = 2.066, p < .1.

We derived two indices to determine whether indi-
viduals responded differently to the deviant stimulus set.
First, we isolated trials that featured the 75/25 pair, and
we calculated the difference in preference for the 75 rule

during standard and deviant trials (i.e., Standard(75/25) −
Deviant(75/25)). If participants detected the probability
reversal, they would favor the 75 rule in standard trials
and the 25 rule in deviant trials. Second, we isolated trials
that featured the 75/0 and 25/0 pairs. We calculated the
difference in accuracy between 75/0 and 25/0 pairs and
for standard and deviant trials, (i.e., [Standard(75/0) −
Standard(25/0)] − [Deviant(75/0) − Deviant(25/0)]). We
expected that participants would respond more accurately
to the 75/0 pair than to the 25/0 pair during standard
trials: The 75 rule had far greater utility than the 0 rule,
whereas the 25 rule had only slightly greater utility than
the 0 rule. Furthermore, if participants detected the prob-
ability reversal, they would respond more accurately to
the 25/0 pair than to the 75/0 pair during deviant trials;
because probabilities reversed in deviant trials, the 25/0
pair now contained a clear winner and the 75/0 pair
did not. We calculated these two indices for each par-
ticipant. As seen in Figure 4, they were highly correlated,
r = .74, p < .01. Thus, the weak interaction present in
the selection data (Figure 3) arose from a subset of par-
ticipants that exhibited moderate sensitivity to the deviant
stimulus set.

ERP Results

We quantified the FRN as the difference between wave-
forms following losses and wins that were equally likely.
Participants displayed an FRN for improbable outcomes
(losses after 75 rule − wins after 25 rule) and probable
outcomes (losses after 25 rule − wins after 75 rule) and
for all trial types (Figure 5). A 3 (trial type: standard,
novel, deviant) × 2 (outcome likelihood: probable, im-
probable) × 3 (site: FCz, Cz, CPz) ANOVA of FRN ampli-
tude revealed a significant effect of outcome likelihood,
F(1, 13) = 20.545, p < .001, but not of site, F(2, 26) =
.541, p > .1, or trial type, F(2, 26) = .847, p > .1.
The FRN was greater for improbable than for probable

Figure 3. Percentage of trials
where participants selected the
globally best rule (i.e., 75/25,
75/0, 25/0) by trial type and
choice pair (±1 within-subject
SE ). Circles show performance
of aware participants, and
squares show performance
of unaware participants
(for explanation of groups,
see Model-based analysis).

6 Journal of Cognitive Neuroscience Volume X, Number Y
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of trial type approached significance (all p > .1).
We then focused on site FCz where the FRN was maxi-

mal (Figure 6). A 3 (trial type) × 2 (outcome likelihood)
ANOVA revealed a main effect of outcome likelihood,
F(1, 13) = 19.443, p < .001, but not of trial type, F(2,
26) = 1.109, p > .1. The interaction was also not sig-
nificant, F(2, 26) = 1.540, p > .1. Improbable outcomes
uniformly yielded the largest FRN across all trial types
(Figure 7). Thus, at the level of the group, the FRN was
predominantly sensitive to the utility of abstract rules
for standard, novel, and deviant items alike.

Model-based Analysis

All participants appeared to use abstract rules, but they
differed in the extent to which they overgeneralized those
rules to deviant items. To quantify the contributions of
general and item-specific knowledge to choice behavior,
we modeled the learning and decision-making process.
To do so, we used temporal difference learning (Sutton
& Barto, 1998), an influential technique in the field of arti-
ficial intelligence with strong ties to psychological theories

of human and animal conditioning (Walsh & Anderson,
in press) and physiological models of phasic dopamine
responses (Schultz, 1998). Central to this technique is
the idea that differences between actual and expected
outcomes or reward prediction errors provide teaching
signals. After the individual experiences an outcome,
a prediction error is calculated and used to update the
estimated value of the previous action. In this way, the
individual can learn to associate states and actions with
rewards.

The temporal difference learning framework does not
directly specify what constitutes an action. For example,
in our experiment, individuals could represent actions in
terms of concrete stimulus–response associations (i.e.,
“Choose three if the sample number is one”) or abstract
rules (i.e., “Choose the test number that is greater than
the sample number”). The temporal difference learning
framework also does not specify what constitutes a state.
For example, individuals could learn about the utility of
general rules applicable to all stimulus sets or specific
rules applicable to one stimulus sets. To understand how
these different representations contributed to partici-
pantsʼ behavior, we compared three models: One model

Figure 5. Topography of the
FRN by condition and outcome
likelihood. Time is from 240
to 400 msec with respect to
feedback onset.

Figure 4. Relationship
between behavioral indices
of sensitivity to deviant
set. Positive values denote
enhanced sensitivity.
Grayscale depicts individual
weight parameter (Witem)
estimates for Combination
model (for explanation of Witem,
see Model-based analysis).

Walsh and Anderson 7
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learned the utility of general rules applicable to all stimulus
sets, another model learned item-specific rules applicable
to one stimulus sets, and the final model learned both.

The Combination model represented actions in terms
of general rules (i.e., greater than the sample, less than
the sample, and equal to the sample) that were applicable

to all stimulus sets (Qgeneral). The Combination model also
represented actions in terms of item-specific rules that
were applicable to one stimulus set each (Qitem). Upon
encountering standard and deviant stimulus sets, which
repeated throughout the experiment, the Combination
model calculated a weighted average of the utility estimates

Figure 7. Mean FRN amplitude
(losses − wins) at site FCz
from 240 to 400 msec (±1
within-subject SE). Circles
show FRN for aware participants,
and squares show FRN
for unaware participants
(for explanation of groups,
see Model-based analysis).

Figure 6. ERPs for improbable losses (dashed red), probable losses (dashed black), probable wins (solid black), and improbable wins (solid red)
by trial type at site FCz. FRN (calculated as the difference between loss and win waveforms) for improbable outcomes (dotted red) and probable
outcomes (dotted black).

8 Journal of Cognitive Neuroscience Volume X, Number Y
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provided by the general and item-specific components,
Qcombine = (1 − Witem) × Qgeneral + Witem × Qitem. Upon
experiencing novel trials, which did not repeat throughout
the experiment, the Combination model calculated utility
as the estimate provided by the general component only,
Qcombine = Qgeneral.
In each trial, the model chose from two test numbers.

The probability of selecting a number (πa) was determined
by a softmax decision rule (Sutton & Barto, 1998),

πa ¼ expðQcombineðaÞ=τÞ
expðQcombineðaÞ=τÞ þ expðQcombineðbÞ=τÞ

Selection noise (τ) controlled the degree of randomness
in choices. The softmax selection rule resembles Luceʼs
(1977) choice axiom. The softmax selection rule also
approximates greedy selection among actions whose utility
estimates are subject to continuously varying noise (Fu &
Anderson, 2006).
After each outcome (r), the model computed a reward

prediction error for the general rule that contributed to the
combined utility estimate, δgeneral = r − Qgeneral(a).
The model also computed a reward prediction error for
the item-specific rule that contributed to the combined
utility estimate, δitem = r − Qitem(a). The model used
these prediction errors to update the utility of the general
rule, Qgeneral(a)← Qgeneral(a) + α× δgeneral, and the item-
specific rule, Qitem(a) ← Qitem(a) + α × δitem, that con-
tributed to the combined utility estimate. Learning rate
(α) scaled the size of utility updates. The model received
rewards of +1 and 0 for positive and negative feedback,
respectively.
We used the behavioral data to estimate parameter val-

ues for each participant (α, τ, and Witem). We presented
the model with the history of choices and rewards that
the participant experienced. For each trial, t, we calcu-
lated the probability that the model would make the same
choice as the participant, pk(t). We used the simplex
optimization algorithm (Nelder & Mead, 1965) with mul-
tiple start points to identify parameter values that maxi-
mized the log likelihood of the observed choices, LLE =
!t ln( pk(t)).
We also evaluated the performance of two nested

variants of the Combination model. In the General model,
we setWitem = 0 to simulate exclusive use of general rules.
In the Item model, we set Witem = 1 to simulate exclusive

use of item-specific rules. For each participant, we deter-
mined whether the General or Item models outperformed
the Combination model using the likelihood ratio test
(Lewandowsky & Farrell, 2011).

Behavioral Results

Averaged across trials, the likelihood of the observed
choices produced by the best fitting parameterization of
the Combination model for each participant equaled
.74 ± .02. Estimates for the weight parameter approached
zero (indicative of exclusive use of general rules) for all
but five participants (Figure 4). These same five partici-
pants exhibited the greatest scores for the two indices
used to assess behavioral sensitivity to deviant items.

The Item model did not outperform the Combination
model for any participant (all p > .1 by the likelihood
ratio test). The General model, in contrast, outperformed
the Combination model for all but five participants ( p <
.05). On the basis of these contrasts, we identified the five
participants best described by the Combination model,
and the nine best described by the General model. Be-
cause item-specific utility values influenced behavior in
the former group but not in the latter, we simply refer
to these groups as “aware” and “unaware.” We compared
parameter estimates for the Combination model between
aware and unaware participants. Expectedly, the value of
the weight parameter (Witem) was greater for aware par-
ticipants, t(12) = 7.524, p < .0001 (Table 2). No other
parameters differed between groups.

We then separated the behavioral data according to
participantsʼ model-based classifications (Figure 3). The
interaction between trial type and rule pair was significant
in aware participants, F(4, 16) = 6.343, p < .01, but not in
unaware participants, F(4, 32) = 1.066, p > .1. Although
aware participants exhibited sensitivity to deviant items,
they did not completely reverse their decisions for the
75/25 pair in deviant trials. Response accuracy for the 75/
25 pair, defined as the percentage of trials where partici-
pants selected the locally optimal rule, remained lower
for deviant trials than for standard trials, t(4) = 3.595,
p < .05, or novel trials, t(4) = 3.799, p < .05. These re-
sults describe aggregate responding over the course of
the experiment. Aware participants exhibited increasing
sensitivity to deviant items, although they never fully re-
versed their decisions for the 75/25 pair in deviant trials

Table 2. Model Parameter Estimates by Participant Subgroup for Experiments 1 and 2

Experiment Subgroup α Witem τ

1 Aware (n = 5) .02 ± .01 .37 ± .06 .14 ± .02

Unaware (n = 9) .07 ± .05 .02 ± .01 .17 ± .03

2 Aware (n = 11) .06 ± .03 .71 ± .07 .19 ± .02

Unaware (n = 3) .16 ± .16 .09 ± .07 .29 ± .18
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(Appendix). Unaware participants never exhibited any
sensitivity to deviant items.

Ancillary ERP Analysis

We divided the ERP data according to participantsʼ model-
based classifications and computed FRN amplitude at site
FCz by trial type and outcome likelihood (Figure 7). Aware
participants showed an interaction between trial type and
outcome likelihood, F(2, 8) = 5.753, p < .05, but unaware
participants did not, F(2, 18) = .524, p > .1. These results
show that participants who exhibited behavioral aware-
ness of deviant items also displayed neural sensitivity in
the form of a differential FRN to deviant items.

Discussion

Participants responded correctly to standard stimulus sets.
Because these sets repeated throughout the experiment,
participants could base selections on concrete stimulus–
response associations or abstract rules. Participants also
responded correctly to novel stimulus sets. Because these
sets never repeated, participants could only base selec-
tions on abstract rules. Most participantsʼ responses to
the deviant stimulus set were indistinguishable from their
responses to standard and novel sets. In principle, par-
ticipants could have responded correctly to the deviant
set by using concrete stimulus–response associations or
by learning about the utility of abstract rules as applied
to those items specifically. In actuality, the majority over-
generalized the abstract rules that were most suitable for
standard and novel sets.

Our model-based analysis supports the idea that most
participants applied a common set of abstract rules to
standard, novel, and deviant stimulus sets alike. Because
the Item model cannot generalize and because sample
and test numbers never repeat in novel trials, the Item
model performs at chance in novel trials. Participants per-
formed equally well in standard and novel trials, however.
Because the General model ignores information about
specific number values, the General model treats standard,
novel, and deviant trials identically. So too did most par-
ticipants. Some exhibited sensitivity to the probability
reversal in deviant trials, however. For these participants,
the Combination model permitted generalization in novel
trials and item-specific learning in deviant trials.

Negative feedback produced an FRN. The amplitude of
the FRN was greater for improbable outcomes than for
probable outcomes and was comparable during standard,
novel, and deviant trials. The finding that the FRN was
equivalent during standard and novel trials demonstrates
that the FRN is sensitive to the utility of abstract response
rules. That the FRN was also equivalent during deviant
trials, where the utility of concrete stimulus–response
associations directly opposed the utility of abstract rules,
underscores this point.

The modeling results revealed a subset of individuals
who displayed behavioral sensitivity to deviant items. In-
terestingly, these participantsʼ neural responses reflected
some sensitivity to the item-specific reward probabilities
as well. This suggests that behavioral and neural adap-
tation take place over a shared representation of the
taskʼs states and actions, a point that we explore further
in Experiment 2.

EXPERIMENT 2

In Experiment 1, the FRN tracked the item-specific prob-
ability of reward in participants who detected deviant
trials, whereas the FRN tracked the overall probability of
reward in participants who did not. These results indicate
that the representation of states and actions that guides
behavior also influences the FRN. Because so few partici-
pants detected the deviant stimulus set, however, this con-
clusion remains speculative. Our goal in Experiment 2 was
to increase the number of participants who distinguished
between deviant items as compared with standard and
novel items.
To do so, we adopted two theoretically motivated

manipulations (Lovett & Schunn, 1999). First, we pre-
sented standard, novel, and deviant stimulus sets in dis-
tinctive font colors. Second, we instructed participants to
pay attention to the font color, and we informed them
that the reward probabilities differed for one color. We
predicted that these manipulations would produce a
greater number of aware participants in Experiment 2. If
behavioral adaptation and neural adaptation take place
over a shared representation of a taskʼs states and ac-
tions, the FRN will be sensitive to item-specific reward
probabilities in aware participants, and the FRN will be
insensitive to item-specific reward probabilities in unaware
participants.

Methods

Participants

Fourteen graduate and undergraduate students partici-
pated on a paid volunteer basis (six men and eight women,
ages ranging from 19 to 38 years with a mean age of
25 years). All were right-handed, and none reported a
history of neurological impairment.

Procedure

The procedure was identical to Experiment 1 with one
exception: Font color varied by trial type. Standard, novel,
and deviant stimulus sets appeared in different colors that
were randomized across participants. For example, one
standard stimulus set always appeared in red and the
other in yellow, half of the novel stimulus sets appeared
in blue and the others in green, and the deviant stim-
ulus set always appeared in cyan.4 As in Experiment 1,
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participants were informed about the significance of the
relationship between the values of the test numbers and
the sample number. They were further informed about
the significance of font colors. They were told, “In dif-
ferent trials, the numbers will appear in different colors.
Pay attention to the color of the numbers. The reward
probabilities are the same for most colors, but they are
different for one color.”

Results

Behavioral Results

Participants favored the 75 rule from the 75/25 and 75/0
pairs, and they favored the 25 rule from the 25/0 pair (Fig-
ure 3). A 3 (trial type: standard, novel, deviant) × 3 (rule
pair: 75/25, 75/0, 25/0) ANOVA revealed main effects of
trial type, F(2, 26) = 23.216, p < .0001, and rule pair,
F(2, 26) = 9.669, p < .001. Participants were more likely
to select the globally best rules in standard and novel
trials than in deviant trials, and they were far more likely
to select the globally best rules in trials with the 75/25
and 75/0 pairs than in trials with the 25/0 pair. The interac-
tion between trial type and rule pair was also significant,
F(4, 52) = 21.652, p < .0001. Participants were less likely
to choose the 75 rule from the 75/25 pair for deviant trials
as compared with standard trials, t(13) = 5.702, p <
.0001, and novel trials, t(13) = 5.590, p< .0001, indicating
that they detected that the 75 rule was less likely to be
rewarded in deviant trials.
As in Experiment 1, we derived two indices to deter-

mine whether individuals responded differently to the
deviant stimulus set. For trials with the 75/25 pair, we cal-
culated the difference in preference for the 75 rule during
standard and deviant trials. For trials with the 75/0 and
25/0 pairs, we calculated the difference in accuracy be-
tween 75/0 and 25/0 pairs and for standard and deviant
trials. As seen in Figure 4, the measures were highly cor-
related, r = .78, p < .01. Thus, the strong interaction
present in the choice data (Figure 3) arose from the
subset of participants sensitive to deviant items.

ERP Results

We quantified the FRN as the difference between wave-
forms following losses and wins that were equally likely.
Participants displayed an FRN for improbable outcomes
(losses after 75 rule − wins after 25 rule) and probable
outcomes (losses after 25 rule − wins after 75 rule) and
for all trial types (Figure 5). A 3 (trial type: standard, novel,
deviation) × 2 (outcome likelihood: probable, improb-
able) × 3 (site: FCz, Cz, CPz) ANOVA of FRN amplitude
revealed a significant effect of outcome likelihood, F(1,
13) = 15.912, p < .01, but not of site, F(2, 26) = .542,
p > .1, or trial type, F(2, 26) = 1.642, p > .1. The FRN
was greater for improbable than for probable outcomes
at all sites. The interaction between trial type and out-

come likelihood approached significance, F(2, 26) =
3.071, p < .1.

We then focused on site FCz, where the FRN was maxi-
mal (Figure 6). A 3 (trial type) × 2 (outcome likelihood)
ANOVA revealed a main effect of outcome likelihood, F(1,
13) = 14.259, p < .01, but not of trial type, F(2, 26) =
1.781, p > .1. Again, the interaction was marginally sig-
nificant, F(2, 26) = 3.301, p < .1. Improbable outcomes
yielded larger FRNs than probable outcomes for standard
and novel trials, but not for deviant trials (Figure 7). It is
not surprising that the interaction between trial type and
outcome likelihood was weak because the aggregate data
contained a mixture of unaware and aware participants,
as we address next.

Model-based Analysis

To quantify the contributions of general and item-specific
knowledge to choices, we fit the Combination model to
each participant. The Combination model was imple-
mented as in Experiment 1, with the following exception.
Because sample and test numbers defined states in
Experiment 1 and because these numbers did not repeat
during novel trials, the Combination model could not
apply item-specific knowledge to novel stimulus sets in
Experiment 1. Because stimulus color defined states in
Experiment 2 and because these colors did repeat during
novel trials, the Combination model could apply item-
specific knowledge to novel stimulus sets in Experiment 2.
This knowledge was specific to an itemʼs color but
described abstract mathematical principles that were
applicable to the general class of numerical stimuli. We
presented the model with the history of choices and re-
wards that the participant experienced, and we identified
the parameter values that maximized the log likelihood
of the observed sequence of choices (α, τ, and Witem).
Additionally, we tested whether the General (Witem =
0) or Item (Witem = 1) models outperformed the Com-
bination model for each participant using the likelihood
ratio test.

Model Results

Averaged over trials, the likelihood of the observed
choices produced by the best fitting parameterization
of the Combination model for each participant equaled
.74 ± .02 (coincidently, the same as in Experiment 1).
Estimates for the weight parameter greatly exceeded
zero for all but three participants (Figure 4). These
same three participants exhibited the lowest scores for
the two indices used to assess behavioral sensitivity to
deviant items.

The Combination model outperformed the Item model
for all but three participants ( p < .05), and the Com-
bination model outperformed the General model for all
but three participants ( p < .05). Thus, these contrasts
yielded eleven participants best described by the Item or
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Combination model (aware participants), and three best
described by the General model (unaware participants).
We compared parameter estimates for the Combination
model between aware and unaware participants. The
value of the weight parameter (Witem) was greater for
aware participants, t(12) = 4.529, p < .001 (Table 2). No
other parameters differed between groups.

We then separated the behavioral data according to
participantsʼ model-based classifications (Figure 3). The
interaction between trial type and rule pair was significant
in aware participants, F(4, 40) = 42.502, p< .0001, but not
in unaware participants, F(4, 8) = .520, p > .1. Although
aware participants exhibited sensitivity to deviant items,
they did not completely reverse their decisions for the
75/25 pair in deviant trials. Response accuracy for the 75/
25 pair, defined as the percentage of trials where partici-
pants selected the locally optimal rule, remained lower for
deviant trials than for standard trials, t(10) = 4.931, p <
.001, or novel trials, t(10) = 4.798, p < .001. These results
describe aggregate responding over the course of the ex-
periment. Sensitivity to deviant items gradually increased
over the course of the experiment in aware participants,
but unaware participants never exhibited any sensitivity
to deviant items (Appendix).

Ancillary ERP Analysis

We divided the ERP data according to participantsʼ model-
based classifications and computed FRN amplitude at
site FCz by trial type and outcome likelihood (Figure 7).
Aware participants showed an interaction between trial
type and outcome likelihood, F(2, 20) = 9.995, p < .01,
but unaware participants did not, F(2, 4) = 2.152, p > .1.

Although the relationship between awareness, trial type,
and outcome likelihood was evident in both experiments,
few participants fell into the aware subgroup in Experi-
ment 1, and few fell into the unaware subgroup in Experi-
ment 2. To overcome this limitation, we combined data
from Experiments 1 and 2 and replicated the preceding
analysis. The critical three-way interaction between trial
type, outcome likelihood, and awareness was significant,
F(2, 48) = 9.711, p < .001, and was not influenced by
experiment, F(2, 48) = 1.661, p > .1. The effect of out-
come likelihood was modulated by trial type in aware par-
ticipants, F(2, 28) = 12.002, p < .001, but not in unaware
participants, F(2, 24) = 1.504, p > .1.

Even within subgroups, participants displayed a range of
values for the weight parameter. As such, we examined
whether individual values of the weight parameter related
to neural sensitivity toward deviant items. To do so, we
calculated the effect of outcome likelihood during standard
and novel trials (improbable FRN − probable FRN) and
subtracted from it the effect of outcome likelihood during
deviant trials (improbable FRN − probable FRN).5 Nega-
tive values of this index reflect neural sensitivity toward
deviant items. The correlation between the weight param-
eter and neural sensitivity was significant within each

experiment (Experiment 1, r = −.50, p < .05; Experi-
ment 2, r = −.70, p < .01) and across the two experi-
ments, r = −.60, p < .001. Neural sensitivity to deviant
items increased with the value of the behavioral weight
parameter (Figure 8).

Discussion

The color grouping and instruction manipulations in
Experiment 2 increased participantsʼ sensitivity to the
deviant stimulus set. All participants responded correctly
to standard stimulus sets, all correctly generalized abstract
rules to novel stimulus sets, and most avoided over-
generalizing abstract rules to the deviant stimulus set.
The larger estimates for the weight parameter in the Com-
bination model reflected participantsʼ enhanced sensitiv-
ity to deviant items, as did the fact that the Item and
Combination models matched participants much more
closely than the General model did.
What effect, if any, did participantsʼ heightened sensitiv-

ity to deviant items have on the FRN? As in Experiment 1,
the amplitude of the FRN was greater for improbable out-
comes than for probable outcomes and was comparable
during standard and novel trials. The FRN nearly reversed
for deviant items, however. This effect was especially ap-
parent for aware participants in Experiments 1 and 2 and
was completely absent for unaware participants. More-
over, the degree to which neural responses reversed for
deviant items, as compared with standard and novel
items, strongly related to individual differences in the be-
havioral weight parameter from the Combination model.

GENERAL DISCUSSION

The two main results of these experiments can be sum-
marized quite simply. First, participants fluently applied

Figure 8. Scatter plot of individualsʼ neural sensitivity to deviant
items (see text for details) and estimates for weight parameter in
Combination model.
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abstract rules to repeating and novel stimuli. Participants
differed, however, in their ability to detect deviant items
and to adjust their responses accordingly. Second, the
FRN tracked behavioral performance. Although previous
studies have demonstrated that the FRN is sensitive to
the utility of concrete stimulus–response associations (for
a review, see Walsh & Anderson, 2012), the current results
show for the first time that the FRN is also sensitive to the
utility of abstract response rules applied to novel stimuli.
More strikingly, the FRN reflected item-specific reward
probabilities in participants who detected the deviant set,
and the FRN reflected overall reward probabilities in par-
ticipants who did not. Thus, these results show that the
representation of states and actions that guides behavior
shapes the FRN.
Before conducting these experiments, it was unclear

whether the FRN would track behavior. Some studies
have found that the FRN only exhibits sensitivity to out-
come likelihood in participants who display concurrent
behavioral adaptation (Krigolson et al., 2009; Bellebaum
& Daum, 2008). Yet other studies have reported a dis-
sociation between the FRN and behavior. For example,
Walsh and Anderson (2011b) recorded ERPs as par-
ticipants performed a probabilistic choice task. Before
the task, participants received a description of the re-
ward probabilities associated with each response. Instruc-
tion eliminated participantsʼ reliance on feedback as
evidenced by their immediate asymptotic performance.
In striking contrast, the FRN continued to adapt with
experience. The FRN only distinguished between prob-
able and improbable outcomes after participants had
amassed significant practice. Taken together, the results
from that study and the current experiments indicate that
the representations of states and actions that guide be-
havior serve as a lens through which the FRN acquires
information about reward probabilities from experience.
These representations can be concrete, as in the case of
earlier studies, or abstract, as in the case of the current
experiments.
These results raise several additional questions. First,

why did the FRN fail to reverse for deviant items in aware
participants? Likewise, although aware participants came
to favor the alternative rule for the deviant stimulus
set, why did their item-specific accuracy remain lower
in deviant trials than in standard and novel trials? Our
model-based analysis revealed that the weight participants
assigned to item-specific utilities (Witem) typically fell
below one. In other words, even aware participants over-
generalized abstract rules to some extent. Our correla-
tional analysis expanded upon this result by showing that
overgeneralization of behavioral responses, as assessed
by the value of the weight parameter, strongly related to
overgeneralization in neural responses. Additionally, par-
ticipants did not begin the experiments knowing the
identity of the deviant stimulus set or the utilities of the
abstract rules. As such, behavioral and neural responses
to deviant items could only reverse in later trials.

Second, did participants actually calculate the utility
of item-specific and general rules, and did they com-
bine these estimates before responding in each trial?
Our computational approach resembles Jacobs, Jordan,
Nowlan, and Hintonʼs (1991) mixture of experts frame-
work. The underlying notion is that complex problems
can be decomposed into subparts that are more easily
solvable. The mixture of experts framework divides prob-
lems into subparts and assigns each subpart to an expert
module. A separate gating module controls the output
and learning of expert modules.

Within this framework, the gating module can simul-
taneously assign weight to the outputs of multiple experts.
Researchers have used such an approach to combine rule
and exemplar knowledge in category learning (Erickson
& Kruschke, 1998) and to combine utility estimates
produced by different algorithms in reward learning
tasks (Frank & Badre, 2012; Gläscher, Daw, Dayan, &
OʼDoherty, 2010). Alternatively, the gating module can
select a single expert in a winner-take-all fashion. For
example, in Nosofsky and Palmeriʼs (1998) RULEX model,
individuals categorize stimuli using a rule process or exem-
plar memory. Likewise, in cognitive architectures such as
ACT-R (Anderson, 2007), production rules that express
procedural and declarative knowledge compete for
expression. In these examples, the varying but singular
processes evoked in individual trials can produce the
appearance of averaging when viewed in aggregate.

In the Combination model, we assigned item-specific
and general knowledge to separate experts, and we com-
bined their outputs using a weight parameter. The Combi-
nation model might also approximate an architecture
in which item-specific responses compete with general
responses on a trial-by-trial basis. By this view, individual
differences in sensitivity to deviant items arise from the
different utility values participants initially assign to item-
specific and general responses. For example, an individual
that begins with a strong preference for general rules will
rarely select their item-specific counterparts. As such, the
individual will respond similarly to all stimulus sets. Alter-
natively, an individual that begins with a weak preference
for general rules will instead rely on item-specific re-
sponses. As such, the individual will respond differently
to the deviant stimulus set.

Third, did participants label stimuli as “greater than,”
“less than,” or “equal to,” and did the FRN track concrete
associations between these subvocalized labels and re-
sponses? By this view, the sensitivity of the FRN to the
utility of abstract rules was a byproduct of the interme-
diate stimulus representations that participants formed.
The same question applies to all studies of rule use: Do
abstract rules give rise to neural responses, or do concrete
associations built upon internal, intermediate stimulus rep-
resentations give rise to neural responses? To the extent
that the individual can apply a label to an abstract rule,
this possibility can never be rejected. The more basic
message of this article, however, is that behavioral and
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neural responses are not bound to physical features of
the stimulus and that abstract rules (or the intermediate
representations they produce) influence behavioral and
neural responses in a complementary manner.

Fourth and finally, how did participants acquire the cor-
rect representation of states and actions in the first place?
People exhibit striking sensitivity to base rates (Lovett &
Anderson, 1996; Maddox, 1995; Reder, 1987; Friedman
et al., 1964). This was the case in both experiments, where
all participants learned which abstract rules were re-
warded most frequently. Acquisition of base rate infor-
mation often occurs in parallel with the more difficult
task of identifying the stimulus features and primitive
actions that define a task (Wilson & Niv, 2012; Lovett &
Schunn, 1999; Newell & Simon, 1972). In machine learn-
ing, this entails projecting a high-dimensional space onto
a tractable set of states and actions over which learning
can occur (i.e., the curse of dimensionality; Sutton &
Barto, 1998).

Lovett and Schunn (1999) presented a theoretical
framework for understanding how changes in mental
representation influence base rate sensitivity. Most rele-
vant to the current work is the first stage in their process
model; representing the task. Lovett and Schunn pro-
posed that people combine salient features of the task
with prior knowledge to form an initial representation
of states and actions. On the basis of these ideas, we
presented standard, novel, and deviant stimulus sets in
distinctive font colors during Experiment 2. We reasoned
that font color, a salient feature, would allow participants
to partition the different trial types into separate groups.
Additionally, we instructed participants to pay attention
to the font color, and we informed them that the reward
probabilities differed for one color. We reasoned that
instruction, a source of prior knowledge, would permit
participants to use font color to form a multistate repre-
sentation. These manipulations had the desired effect
of engendering greater sensitivity to the base rates of
success for deviant items.

Verbal instruction allowed participants to adopt the
correct representation of the task immediately. However,
verbal instruction is not necessary to discover abstract
response rules. For example, monkeys can learn to select
test pictures that match a sample picture (Wallis et al.,
2001). Such learning takes time (i.e., tens of thousands
of trials in the case of monkeys; Wallis & Miller, 2003).
Although humans could presumably discover the same
rules more quickly, the challenge is not trivial. In fact, we
withheld instruction from participants in earlier versions
of these experiments. Asymptotic behavior was identical
to the behavior of participants reported here, but people
varied greatly in how long they took to discover the
abstract mathematical rules. The question of how people
discover such rules is interesting in its own right and
warrants further investigation (Wilson & Niv, 2012).

These questions aside, the current experiments clearly
demonstrate that behavior and the FRN are not bound by

concrete stimulus–response learning. In addition, these
experiments demonstrate that the representation of
states and actions that guides behavior shapes the FRN.
Thus, these results advance our understanding of the
FRN and strengthen the connection between the FRN
and behavioral control.

APPENDIX

To what extent did participantsʼ behavior change over
the course of the experiment, and did the Combination
model exhibit corresponding change? To address these
questions, we divided each experiment into five blocks of
225 trials and computed choice data separately for each
block (Supplementary Figures 1 and 2). Because the best
response differs between deviant stimulus sets and stan-
dard and novel stimulus sets in trials with the 75/25 pair,
these trials provide the strongest test of whether par-
ticipants were sensitive to deviant items. As such, we
restricted our analyses to these trials. We performed 5
(trial block) × 3 (trial type) ANOVAs separately for aware
and unaware participants in Experiments 1 and 2.
In Experiment 1, unaware participants exhibited a main

effect of block only, F(4, 32) = 4.245, p < .01. Aware par-
ticipants exhibited a main effect of trial type only, F(2, 8) =
6.994, p < .05. Aware participants displayed moderate
sensitivity to deviant items beginning around the second
225-trial block, yet they never favored the alternative
response above chance in deviant trials. In Experiment 2,
unaware participants did not exhibit any significant effects,
likely owing to low statistical power. In contrast, aware
participants exhibited a main effect of trial type, F(2,
20) = 60.057, p < .001, and a significant interaction
between block and trial type, F(8, 80) = 20.028, p <
.001. Aware participants displayed moderate sensitivity
to deviant items beginning around the second 225-trial
block, and they increasingly favored the alternative
response in deviant trials.
The Combination model captured these trends, includ-

ing the transition from above- to below-chance selection
of the globally optimal rule in deviant trials during Ex-
periment 2. General rules in the Combination model are
updated during every trial, whereas item-specific rules
are only updated during trials when the corresponding
items appear. Because of these disproportionate learning
opportunities, general rules dominate performance ini-
tially, producing overgeneralization. As people amass
experience with individual stimulus sets, however, item-
specific rules increasingly contribute to performance.
These results indicate that the FRN for deviant items

should reverse in aware participants following extended
training. In aware participants of Experiment 1, FRN
amplitude was equivalent for improbable and prob-
able outcomes over the first half of trials (−2.79 μV vs.
−2.78 μV) and reversed over the second half of trials
(−0.87 μV vs. −2.28 μV). Likewise, in aware participants
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of Experiment 2, FRN amplitude was greater for im-
probable than for probable outcomes over the first half
of trials (−3.71 μV vs. −2.06 μV) and reversed over the
second half of trials (−3.36 μV vs. −4.46 μV). Although
suggestive, these results did not reach significance, likely
because so few observations contributed to the averages
of improbable events.
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Notes

1. By correct, we mean the response that was more likely to
be rewarded.
2. One could also present configurations of sample and test
numbers that appeared only once and that deviated from the
overall rule probabilities; however, learning to respond correctly
to deviant items that appeared only once would be impossible.
3. Equal to was never the globally optimal or suboptimal rule.
Such assignments would create scenarios where participants
could ignore the sample number and maximize reward by
always selecting the larger of the test numbers or by always
selecting the smaller of the test numbers.
4. Color assignment was counterbalanced across participants.
To equate color frequencies, half of the novel stimulus sets
appeared in one color, and half appeared in another color.
5. This essentially measures the strength of the interaction
between trial type and outcome likelihood.
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