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To behave adaptively, we must learn from the consequences of our actions. Doing so is difficult when
the consequences of an action follow a delay. This introduces the problem of temporal credit assignment.
When feedback follows a sequence of decisions, how should the individual assign credit to the
intermediate actions that comprise the sequence? Research in reinforcement learning provides 2 general
solutions to this problem: model-free reinforcement learning and model-based reinforcement learning. In
this review, we examine connections between stimulus–response and cognitive learning theories, habitual
and goal-directed control, and model-free and model-based reinforcement learning. We then consider a
range of problems related to temporal credit assignment. These include second-order conditioning and
secondary reinforcers, latent learning and detour behavior, partially observable Markov decision pro-
cesses, actions with distributed outcomes, and hierarchical learning. We ask whether humans and
animals, when faced with these problems, behave in a manner consistent with reinforcement learning
techniques. Throughout, we seek to identify neural substrates of model-free and model-based reinforce-
ment learning. The former class of techniques is understood in terms of the neurotransmitter dopamine
and its effects in the basal ganglia. The latter is understood in terms of a distributed network of regions
including the prefrontal cortex, medial temporal lobes, cerebellum, and basal ganglia. Not only do
reinforcement learning techniques have a natural interpretation in terms of human and animal behavior
but they also provide a useful framework for understanding neural reward valuation and action selection.
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To behave adaptively, we must learn from the consequences of
our actions. These consequences sometimes follow a single deci-
sion, and they sometimes follow a sequence of decisions. Although
single-step choices are interesting in their own right (for a
review, see Fu & Anderson, 2006), we focus here on the multistep
case. Sequential choice is significant for two reasons. First, se-
quential choice introduces the problem of temporal credit assign-
ment (Minsky, 1963). When feedback follows a sequence of
decisions, how should one assign credit to the intermediate actions
that comprise the sequence? Second, sequential choice makes
contact with everyday experience. Successful resolution of the
challenges imposed by sequential choice permits fluency in do-
mains where achievement hinges on a multitude of actions. Un-
successful resolution leads to suboptimal performance at best (Fu
& Gray, 2004; Yechiam, Erev, Yehene, & Gopher, 2003) and

pathological behavior at worst (Herrnstein & Prelec, 1991; Rach-
lin, 1995).

Parallel Learning Processes

Contemporary accounts of sequential choice build on classic
theories of behavioral control. We consider these theories in brief
to prepare for our discussion of sequential choice.

In describing how humans and animals select actions, psychol-
ogists have long distinguished between habitual and goal-directed
behavior (James, 1950/1890). This distinction was made rigorous
in stimulus–response and cognitive theories of learning during the
behaviorist era. Stimulus–response theories portrayed action as
arising directly from associations between stimuli and responses
(Hull, 1943). These theories emphasized the role of reinforcement
in augmenting habit strength. Cognitive theories, on the other
hand, portrayed action as arising from prospective inference over
internal models, or maps, of the environment (Tolman, 1932).
These theories stressed the interplay between planning, anticipa-
tion, and outcome evaluation in goal-directed behavior.

Research in psychology and neuroscience has provided new
insight into the distinction between stimulus–response and cogni-
tive learning theories. The emerging view is that two forms of
control, habitual and goal-directed, coexist as complementary
mechanisms for action selection (Balleine & O’Doherty, 2010;
Daw, Niv, & Dayan, 2005; Doya, 1999; Rangel, Camerer, &
Montague, 2008). Although both forms of control allow the indi-
vidual to attain desirable outcomes, behavior is only considered
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goal-directed if (a) the individual has reason to believe that an
action will result in a particular outcome and (b) the individual has
reason to pursue that outcome. Evidence for this distinction comes
from animal conditioning studies, which show that different fac-
tors engender habitual and goal-directed control (Balleine &
O’Doherty, 2010). Further evidence comes from physiological
studies, which show that different neural structures are necessary
for the expression of habitual and goal-directed behavior (Balleine
& O’Doherty, 2010).

The same distinction has arisen in the computational field of
reinforcement learning (RL). RL addresses the question of how
one should act to maximize reward. The key feature of the rein-
forcement learning problem is that the individual does not receive
instruction, but must learn from the consequences of their actions.
Two general solutions to this problem exist: model-free RL and
model-based RL. Model-free techniques use stored action values
to evaluate candidate behaviors, whereas model-based techniques
use an internal model of the environment to prospectively calculate
the values of candidate behaviors (Sutton & Barto, 1998).

Deep similarities exist between model-free RL, habitual control,
and stimulus–response learning theories. All treat stimulus–
response associations as the basic unit of knowledge, and all use
experience to adjust the strength of these associations. Deep sim-
ilarities also exist between model-based RL, goal-directed control,
and cognitive learning theories. All treat action-outcome contin-
gencies as the basic unit of knowledge, and all use this knowledge
to simulate prospective outcomes. The dichotomy between model-
free and model-based learning, which has been applied to deci-
sions that require a single action, extends to decisions that involve
a sequence of actions.

Scope of Review

The goal of this review is to synthesize research from the fields
of cognitive psychology, neuroscience, and artificial intelligence.
We focus on model-free and model-based learning. Existing re-
views concentrate on the computational or neural properties of
these techniques, but no review has systematically evaluated the
results of studies that involve multistep decision making. A spate
of recent experiments has shed light on the behavioral and neural
basis of sequential choice, however. To that end, we examine the
correspondence between predictions of reinforcement learning
models and the results of these experiments. The first and second
sections of this review introduce the computational and neural
underpinnings of model-free RL and model-based RL. The third
section examines a range of problems related to temporal credit
assignment that humans and animals face. The final section iden-
tifies outstanding questions and directions for future research.

Model-Free Reinforcement Learning

Reinforcement learning is not a monolithic technique but,
rather, a class of techniques designed for a common problem:
learning through trial-and-error to act so as to maximize reward.
The individual is not told what to do but instead must select an
action, observe the result of performing the action, and learn from
the outcome. Because feedback pertains only to the selected ac-
tion, the individual must sample alternative actions to learn about
their values. Also, because the consequences of an action may be

delayed, the individual must learn to select actions that maximize
immediate and future reward.

Computational Instantiation of Model-Free
Reinforcement Learning

Prediction. In model-free RL, differences between actual and
expected outcomes, or reward prediction errors, serve as teaching
signals. After the individual receives an outcome, a prediction
error is computed,

�t � �rr�1 � � · V�St�1�� � V�St�. (1)

The value rt�1 denotes immediate reward, V(st�1) denotes the
estimated value of the new world state (i.e., future reward), and
V(st) denotes the estimated value of the previous state. The tem-
poral discount rate (�) controls the weighting of future reward.
Discounting ensures that when state values are equal, the individ-
ual will favor states that are immediately rewarding.

The prediction error equals the difference between the value of
the outcome, [rt�1 � � · V(st�1)], and the value of the previous
state, V(st). The prediction error is used to update the estimated
value of the previous state,

V�st� ¢ V�st� � � · �t. (2)

The learning rate (�) scales the size of updates. When expectations
are revised in this way, the individual can learn to predict the sum
of immediate and future rewards. This is called temporal differ-
ence (TD) learning.

TD learning relates to the integrator model (Bush & Mosteller,
1955) and the Rescorla-Wagner learning rule (Rescorla & Wagner,
1972), two prominent accounts of animal conditioning and human
learning. Like these models, TD learning explains many condi-
tioning phenomena in terms of the discrepancy between actual and
expected rewards (e.g., blocking, overshadowing, and conditioned
inhibition; for a review, see Sutton & Barto, 1990). TD learning
differs, however, in that it is sensitive to immediate and future
reward, whereas the integrator model and the Rescorla-Wagner
learning rule are only sensitive to immediate reward. Thus, while
all three models account for first-order conditioning, TD learning
alone accounts for second-order conditioning. These strengths
notwithstanding, TD learning fails to account for some of the same
conditioning phenomena that challenge the integrator model and
the Rescorla-Wagner learning rule (e.g., latent inhibition, sensory
preconditioning, facilitated reacquisition after inhibition, and the
partial reinforcement extinction effect), a point that we return to
throughout the review and in the discussion.

Control. Prediction is only useful insofar as it facilitates se-
lection. The actor/critic model (Sutton & Barto, 1998) advances a
two-process account of how humans and animals deal with this
control problem (Figure 1). The critic computes and uses predic-
tion errors to learn state values (Equations 1 and 2). Positive
prediction errors indicate things have gone better than expected,
and negative prediction errors indicate things have gone worse
than expected. The actor uses prediction errors to adjust prefer-
ences, p(s, a),

p�st, at� ¢ p�st, at� � � · �t. (3)
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This learning rule effectively states that the individual should
repeat actions that result in greater rewards than usual and that the
individual should avoid actions that result in smaller rewards than
usual. As the individual increasingly favors actions that maximize
reward, the discrepancy between actual and expected outcomes
decreases and learning ceases. Other model-free techniques like
Q-learning and SARSA bypass state values entirely and learn
action values directly (Sutton & Barto, 1998).

Preferences must still be converted to decisions. This can be
done with the softmax selection rule,

��st, at� �
exp�p�st, at� � 	�

�
a′

exp�p�st, a′� � 	�
. (4)

The temperature parameter (�) controls the degree of stochas-
ticity in behavior. Selections become more random as � increases,
and selections become more deterministic as � decreases. The
softmax selection rule allows the individual to exploit knowledge
of the best action while exploring alternatives in proportion to their
utility. Aside from its computational appeal, the softmax selection
rule resembles Luce’s choice axiom and Thurstonian theory, two
attempts to map preference strengths to response probabilities
(Luce, 1977). The softmax selection rule also approximates greedy
selection among actions whose utility estimates are subject to
continuously varying noise (Fu & Anderson, 2006).

The chief advantage of model-free techniques is that they learn
state and action values without a model of the environment (i.e.,
state transitions and reward probabilities).1 Another advantage of
model-free RL is that action selection is computationally simple.
The individual evaluates actions based on stored preferences or
utility values. This simplicity comes at the cost of inflexibility,
however. Because state and action values are divorced from out-
comes, the individual must experience outcomes to update these
values. For example, if a rat unexpectedly discovers reward in a

maze blind, the value of the blind will increase immediately. The
value of the corridor leading to the blind will only increase,
however, after the rat has subsequently passed through the corridor
and arrived at the revalued location.

Eligibility traces. Eligibility traces mitigate this problem
(Singh & Sutton, 1996). When a state is visited, an eligibility trace
is initiated. The trace marks the state as eligible for update and
fades according to the decay parameter (�),

et�s� ��
 · et�1�s� � 1 if s � st


 · et�1�s� if s � st
. (5)

Prediction error is calculated in the conventional manner (Equation
1), but the signal is used to update all states according to their
eligibility,

V�s� ¢ V�s� � � · �t . et�s�. (6)

Separate traces are assigned to state-action pairs, and state-action
pairs are also updated according to their eligibility. Eligibility
traces allow prediction errors to pass beyond immediate states and
actions, and to reach other recent states and actions.

Neural Instantiation of Model-Free Reinforcement
Learning

Dopamine. Researchers have extensively studied the neural
basis of model-free RL. Much of this work focuses on dopamine,
a neurotransmitter that plays a role in appetitive approach behavior
(Berridge, 2007) and is a key component in pathologies of behav-
ioral control such as addiction, Parkinson’s disease, and Hunting-
ton’s disease (Hyman & Malenka, 2001; Montague, Hyman, &
Cohen, 2004; Schultz, 1998).2 The majority of dopamine neurons
are located in two midbrain structures, the substantia nigra pars
compacta (SNc) and the medially adjoining ventral tegmental area
(VTA). The SNc and VTA receive highly convergent inputs and
project to virtually the entire brain. The striatum and prefrontal
cortex receive the greatest concentration of dopamine afferents,
with the SNc selectively targeting the dorsal striatum and the VTA
targeting the ventral striatum and prefrontal cortex.

In a series of studies, Schultz and colleagues demonstrated that
the phasic responses of dopamine neurons mirrored reward pre-
diction errors (Schultz, 1998). When a reward was unexpectedly
presented, neurons showed enhanced activity at the time of reward
delivery. When a conditioned stimulus preceded reward, however,
neurons no longer responded to reward delivery. Rather, the do-
pamine response transferred to the earlier stimulus. Finally, when
a reward was unexpectedly omitted following a conditioned stim-
ulus, neurons showed depressed activity at the expected time of
reward delivery. These observations motivated the idea that the
phasic response of dopamine neurons codes for reward prediction
errors (Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, &
Montague, 1997).

1 These techniques do require an accurate representation of the state
space. How humans and animals form such a representation remains an
active research topic (Gershman et al., 2010; Kemp & Tenenbaum, 2008).

2 Two-factor theories also posit a role for dopamine in active avoidance
(Dayan, 2012; Maia, 2010). Besides signaling reward, dopamine responses
signal the potential for, and success in, avoiding punishment.

Figure 1. Actor/critic architecture. The actor records preferences for
actions in each state. The critic combines information about immediate
reward and the expected value of the subsequent state to compute reward
prediction errors (�). The actor uses reward prediction errors to update
action preferences, p(s, a), and the critic uses reward prediction errors to
update state values, V(s).
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Basal ganglia. The basal ganglia are a collection of linked
subcortical structures that mediate learning and cognitive functions
(Packard & Knowlton, 2002). The main input structure of the basal
ganglia, the striatum, receives excitatory connections from the
frontal cortex. Striatal neurons modulate activity in the thalamus
via a direct pathway that passes through the internal segment of the
globus pallidus (GPi), and an indirect pathway that passes through
the external segment of the globus pallidus (GPe) and to the GPi
(Joel, Niv, & Ruppin, 2002). At an abstract level, frontal collat-
erals convey information about the state of the world to the
striatum. Activation from the direct and indirect pathways con-
verges on the thalamus, resulting in facilitation or suppression of
action representations.

Dopamine mediates plasticity at corticostriatal synapses (J. N. J.
Reynolds, Hylan, & Wickens, 2001; Wickens, Begg, & Arbuth-
nott, 1996). This has led to the proposal that three factors govern
changes in the strength of corticostriatal synapses in a multiplica-
tive fashion: presynaptic depolarization, postsynaptic depolariza-
tion, and dopamine concentration (J. N. J. Reynolds & Wickens,
2002). By adjusting the strength of corticostriatal synapses accord-
ing to a reward prediction error, the basal ganglia comes to
facilitate actions that yield positive outcomes and to suppress
actions that do not.

Actor/critic. The actor and critic elements have been associ-
ated with the dorsal and ventral subdivisions of the striatum (Joel
et al., 2002; O’Doherty et al., 2004). Structural connectivity stud-
ies support this proposal. The dorsal striatum shares reciprocal
connections with motor cortices, whereas the ventral striatum
receives information about context, stimuli, and rewards through
its connections with limbic and associative structures. Addition-
ally, the ventral striatum, through its connections with the VTA
and SNc, can influence activity in midbrain nuclei that project to
itself and the dorsal striatum (Haber, Fudge, & McFarland, 2000;
Haber, Lynd-Balta, Klein, & Groenewegen, 1990; Joel et al.,
2002). In a similar way, the critic affects the computation of
prediction error signals that reach itself and the actor.

Physiological and lesion studies also implicate the ventral stria-
tum in the acquisition of state values, and the dorsal striatum in the
acquisition of action values (Balleine & O’Doherty, 2010; Cardi-
nal, Parkinson, Hall, & Everitt, 2002; Packard & Knowlton, 2002).
Human neuroimaging results further support this proposal. Instru-
mental conditioning tasks, which require behavioral responses,
engage the dorsal and ventral striatum. Classical conditioning
tasks, which do not require behavioral responses, mainly engage
the ventral striatum (Elliott, Newman, Longe, & Deakin, 2004;
O’Doherty et al., 2004; Tricomi, Delgado, & Fiez, 2004).

Model-Based Reinforcement Learning

Model-free techniques assign utility values directly to states and
actions. To select among candidate actions, the individual com-
pares the utility of each. Model-based techniques adopt a funda-
mentally different approach. From experience, the individual
learns the reward function—that is, the rewards contained in each
state. The individual also learns the state transition function—that
is, the mapping between the current state, actions, and resulting
states. Using this world model (i.e., the reward function and the
transition function), the individual prospectively calculates the
utility of candidate actions in order to select among them.

Computational Instantiation of Model-Based
Reinforcement Learning

Learning a world model. Model-based approaches require a
model of the environment. How can the individual learn about the
reward function, R(st�1), and the state transition function, T(st, at,
st�1), from experience? One solution is to compute something akin
to the prediction errors used in model-free RL. After the individual
enters a state and receives reward rt�1, a reward prediction error is
calculated,

�RPE � rt�1 � R�st�1�. (7)

This differs from the prediction error in model-free RL because it
does not include a term for future reward. The reward prediction
error is used to update the value of R(st�1),

R�st�1� ¢ R�st�1� � �RPE · �RPE. (8)

After the individual arrives at state st�1, a state prediction error is
also calculated,

�SPE � 1 � T�st, at, st�1�. (9)

The state prediction error is used to update the value of T(st, at,
st�1),

T�st, at, st�1� ¢ T�st, at, st�1� � �SPE · �SPE. (10)

The likelihoods of all states not arrived at are then normalized to
ensure that transition probabilities sum to one. The use of error-
driven learning to acquire a causal relationship model constitutes a
variation of the Rescorla-Wagner learning rule (Rescorla & Wag-
ner, 1972).

Policy search. In model-based RL, information about the re-
ward and transition functions is used to calculate state values,

V�st� � �
a’

��st, a′��
s’

T�st, a ′ , s′� · �R�s ′ � � � · V�s ′ ��.

(11)

This quantity equals the value of possible outcomes, {R(s=) � � ·
V(s=)}, weighted according to their probability given the individ-
ual’s selection policy, �(st, a=), and the state transition function,
T(st, a=, s=). After state values are calculated, actions are evaluated
in terms of their immediate and future rewards,

QFWD�st, at� � �
s′

T�st, at, s′� · �R�s ′ � � � · V�s ′ ��.

(12)

Finally, the selection policy is updated by setting �(st, at) �
maxaQFWD(st, a). In other words, the individual selects the most
valuable action in each state.3 By iteratively applying these eval-
uations over all states and actions, the individual will arrive at an
optimal selection policy. This is called policy iteration (Sutton &
Barto, 1998).

3 This formalism does not permit exploration. In model-based RL,
exploration is only useful for resolving uncertainty in the world model.
Techniques exist for incorporating exploration into model-based RL
(Thrun, 1992).
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Policy iteration is but one example of how the individual can use
a world model to select actions. The individual can also use
transition and reward functions to calculate expected rewards over
the next n time steps for all sequences of actions to identify the one
that maximizes return (i.e., forward or depth-first search; Daw et
al., 2005; Johnson & Redish, 2007; Simon & Daw, 2011; Smith,
Becker, & Kapur, 2006). Alternatively, working from the desired
final state, the individual can reason back to the current state (i.e.,
backward induction; Busemeyer & Pleskac, 2009). Finally, using
the transition and reward functions as a generative world model,
the individual can apply Bayesian techniques to infer which policy
is most likely to maximize return (Solway & Botvinick, 2012).

The chief advantage of model-based RL is that it efficiently
propagates experience to antecedent states and actions. For exam-
ple, if a rat unexpectedly discovers reward in a maze blind, policy
iteration allows the rat to immediately revalue states and actions
leading to that blind. Model-based RL has two main drawbacks,
however. First, model-based RL requires a complete model of the
environment. Second, in environments with many states, the costs
of querying the world model become prohibitive in terms of time
and computation. The finite capacity of human working memory
magnifies this concern: people cannot hold an endlessly branching
decision tree in memory.

Neural Instantiation of Model-Based Reinforcement
Learning

Reward function. Neurons in the orbitofrontal cortex (OFC)
encode stimulus incentive values. OFC responses decrease when
participants are satiated on the evoking unconditioned stimulus
(Rolls, Kringelbach, & de Araujo, 2003; Valentin, Dickinson, &
O’Doherty, 2007), and OFC responses correlate with people’s
willingness to pay for appetitive stimuli (Plassmann, O’Doherty, &
Rangel, 2007). Additionally, experienced and imagined rewards
activate the OFC (Bray, Shimojo, & O’Doherty, 2010). These
functions have been linked with goal-directed behavior, a position
further supported by the observations that OFC lesions abolish
devaluation sensitivity (Izquierdo, Suda, & Murray, 2004), and
impair animals’ ability to associate distinct stimuli with different
types of food rewards (McDannald, Lucantonio, Burke, Niv, &
Schoenbaum, 2011).

Transition function. Several regions provide candidate tran-
sition functions. Chief among these is the hippocampus. Rodent
navigation studies show that receptive fields of hippocampal py-
ramidal cells form a cognitive map (O’Keefe & Nadel, 1978).
Neurons preferentially fire as the animal traverses specific loca-
tions in the environment. Ensemble activity sometimes correlates
with positions other than the rodent’s current location, however.
For instance, when rodents rest after traversing a maze, the se-
quence of active hippocampal fields “replays” navigation paths
(Foster & Wilson, 2006). Additionally, when rodents arrive at
choice points in a maze, they pause and engage in vicarious
trial-and-error behavior such as looking down alternate paths (Tol-
man, 1932). The sequence of active hippocampal fields simulta-
neously “preplays” alternate paths at such points, hinting at the
involvement of the hippocampus in forward search (Johnson &
Redish, 2007).

The acquisition and storage of relational knowledge among
nonspatial stimuli also depends on the hippocampus and the sur-

rounding medial temporal lobes (MTL; Bunsey & Eichenbaum,
1996). MTL-mediated learning occurs rapidly, MTL-based mem-
ories contain information about associations among stimuli, and
MTL-based memories are accessible in and transferrable to novel
contexts (N. J. Cohen & Eichenbaum, 1993). These features of the
MTL coincide with core properties of model-based RL. Interest-
ingly, the hippocampus becomes active when people remember the
past and imagine the future, paralleling reports of hippocampal
replay and preplay events in rodents (Schacter, Addis, & Buckner,
2007). Thus, among the many types of knowledge it stores, the
hippocampus may contain state transition functions that permit
forward search in humans as well.

The cerebellum contains a different type of transition function in
the form of internal models of the sensorimotor apparatus (Doya,
1999; Ito, 2008). These models allow the sensorimotor system to
identify motor commands that will produce target outputs. Move-
ment is not a prerequisite for cerebellar activation, however. Cog-
nitive tasks also engage the cerebellum (Stoodley, 2012; Strick,
Dum, & Fiez, 2009). This suggests that the cerebellum contains
internal models that contribute to nonmotoric planning as well
(Imamizu & Kawato, 2009; Ito, 2008).

Last, specific basal ganglia structures encode information about
relationships between actions and outcomes. Electrophysiological
recordings and lesion studies have identified three anatomically
and functionally distinct cortico-basal-ganglia loops: a sensorimo-
tor loop that mediates habitual control, an associative loop that
mediates goal-directed control, and a limbic loop that mediates the
impact of primary reward values on habitual and goal-directed
control (Balleine, 2005; Balleine & O’Doherty, 2010). Model-
based RL has been linked with the associative loop (Daw et al.,
2005; Dayan & Niv, 2008; Niv, 2009). Lesions of the rodent
prelimbic cortex and dorsomedial striatum, parts of the associative
loop, abolish sensitivity to outcome devaluation and contingency
degradation, two assays used to establish that behavior is goal-
directed (Balleine & O’Doherty, 2010; Ostlund & Balleine, 2005;
Yin, Knowlton, & Balleine, 2005).4

Researchers have identified homologous areas in the primate
brain (Wunderlich, Dayan, & Dolan, 2012). Neuroimaging studies
have found that the ventromedial prefrontal cortex (vmPFC) en-
codes expected reward attributable to chosen actions (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Gläscher, Hampton,
& O’Doherty, 2008; Hampton, Bossaerts, & O’Doherty, 2006).
Further, activity in the vmPFC is modulated by outcome devalu-
ation (Valentin et al., 2007), and the vmPFC and dorsomedial
striatum (the anterior caudate) detect the strength of the contin-
gency between actions and rewards (Liljeholm, Tricomi,
O’Doherty, & Balleine, 2011; Tanaka, Balleine, & O’Doherty,
2008). These findings demonstrate that the vmPFC and dorsome-
dial striatum are sensitive to the defining properties of goal-
directed control.

Decision policy. The prefrontal cortex supports more abstract
forms of responses. For example, certain neurons in the lateral

4 Model-free RL, in turn, has been linked with the sensorimotor loop.
Lesions of the rodent dorsolateral striatum, a part of the sensorimotor loop,
restore sensitivity to outcome devaluation and contingency degradation,
indicating that this region supports habitual control (Yin et al., 2004). This
division suggests a refinement of the actor/critic model where the dorso-
lateral striatum functions as the actor element.
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prefrontal cortex (latPFC) appear to encode task sets, or “rules”
that establish context-dependent mappings between stimuli and
responses (Asaad, Rainer, & Miller, 2000; Mansouri, Matsumoto,
& Tanaka, 2006; Muhammad, Wallis, & Miller, 2006; White &
Wise, 1999). Human neuroimaging experiments underscore the
involvement of the latPFC in rule retrieval and use (Bunge, 2004).
The task sets evoked in these studies are akin to a literal decision
policy.

The PFC also supports sequential choice behavior. For example,
in a maze navigation task, neurons in the latPFC exhibited sensi-
tivity to initial, intermediate, and final goal positions prior to
movement onset (Mushiake, Saito, Sakamoto, Itoyama, & Tanji,
2006; Saito, Mushiake, Sakamoto, Itoyama, & Tanji, 2005). Ad-
ditionally, human neuroimaging experiments show that the PFC is
active in tasks that require planning and that PFC activation
increases with planning difficulty (Anderson, Albert, & Fincham,
2005; Owen, 1997). Moreover, latPFC damage impairs planning
and rule-guided behavior while leaving other types of responses
intact (Bussey, Wise, & Murray, 2001; Fuster, 1997; Hoshi,
Shima, & Tanji, 2000; Owen, 1997; Shallice, 1982). Collectively,
these results highlight the involvement of the PFC in facets of
model-based RL. That is not to say that the PFC only performs
model-based RL. Rather, model-based RL draws on a multitude of
functions performed by the PFC and other regions as described
above.

Hybrid Models

The computational literature contains proposals for pairing
model-free and model-based approaches. There is evidence that
the brain also combines model-free and model-based RL. For
example, some computational algorithms augment model-free
learning by replaying or simulating experiences offline (e.g., the
Dyna-Q algorithm; Lin, 1992; Sutton, 1990). The model-free sys-
tem treats simulated episodes as real experience to accelerate TD
learning. In a similar way, hippocampal replay may facilitate
model-free RL by allowing the individual to update cached values
offline using simulating experiences (Gershman, Markman, &
Otto, in press; Johnson & Redish, 2005). Thus, the model-based
system may train a model-free controller.

Other computational algorithms use cached values to limit the
depth of search in model-based RL (Samuel, 1959/1995). This is
especially pertinent in light of the limited capacity of human
short-term memory. For example, although a chess player has
complete knowledge of the environment and can enumerate the
full state-space to discover the optimal move in principle, chess
masters consider a far smaller subspace before acting (de Groot,
1946/1978). This amounts to pruning the branches of the decision
tree (Huys et al., 2012). Rather than exhaustively calculating future
reward, the individual estimates future reward using heuristics
(Newell & Simon, 1972) or cached values from the model-free
system (Daw et al., 2005). Although neural evidence for such
pruning is sparse, one study demonstrated that ventral-striatal
neurons responded when rats received reward and when they
engaged in vicarious trial-and-error behavior at choice points in a
T-maze (van der Meer & Redish, 2009). Thus, the model-free
system may contribute information about branch values to a
model-based controller.

Problems and Paradigms in Sequential Choice

Model-free and model-based RL provide normative solutions to
the problem of temporal credit assignment, and neuroscientific
investigations have begun to map components of these frameworks
onto distinct neural substrates (Table 1). We now turn to empirical
work that presents variants of the temporal credit assignment
problem. We ask whether humans and animals can cope with these
challenges. If so, how, and if not, why not?

Second-Order Conditioning and Secondary
Reinforcers

In the archetypal classical conditioning experiment, a condi-
tioned stimulus (CS) precedes an unconditioned stimulus (US). For
example, a dog views a light (the CS) before receiving food (the
US). Initially, the US evokes an unconditioned response, such as
salivation, but the CS does not. When the CS and US are repeat-
edly paired, however, the CS comes to evoke a conditioned re-
sponse, salivation, as well (Pavlov, 1927). Holland and Rescorla
(1975) asked whether second-order conditioning was possible—
that is, can a CS be used to condition a neutral stimulus? They
found that when a neutral stimulus was paired with a CS, the
neutral stimulus came to evoke a conditioned response as well.

The spread of reinforcement is also seen in tasks that require
behavioral responses. In the standard instrumental conditioning
paradigm, an animal performs a response and receives reward. For
example, a pigeon presses a lever and is given a food pellet.
Skinner (1938) asked whether a neutral stimulus, once condi-
tioned, could act as a secondary reinforcer—that is, can a CS shape
instrumental responses? Indeed, when an auditory click was first
associated with food pellets, pigeons learned to press a lever that
simply produced the auditory click (Skinner, 1938).

In TD learning, a model-free technique, the CS inherits the
value of the US that follows it. Consequently, the CS can condition
neutral stimuli (i.e., second-order conditioning), and the CS can
support the acquisition of instrumental responses (i.e., secondary
reinforcement). By this view, the CS mediates behavior directly
through its reinforcing potential. Model-based accounts can also
accommodate these results. The individual may learn that a neutral
stimulus or action leads to the CS and that the CS leads to the US.

Table 1
Candidate Structures Implementing Model-Free and
Model-Based RL

Component Structure

Model-free RL
Prediction error Substantia nigra pars compacta

Ventral tegmental area
Actor Ventral striatum
Critic Dorsolateral striatum

Model-based RL
Reward function Orbitofrontal cortex
Transition function Hippocampus

Cerebellum
Dorsomedial striatum
Ventromedial prefrontal cortex

Decision policy Lateral prefrontal cortex

Note. RL � reinforcement learning.
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By this view, the CS mediates behavior indirectly through its link
with the US.

The question of model-free or model-based RL maps onto the
classic question of stimulus–response or stimulus–stimulus asso-
ciation. Some results are consistent with the model-free/stimulus–
response position. For example, in higher order conditioning ex-
periments, animals continue to exhibit a conditioned response to
the second-order CS even after the first-order CS is extinguished
(Rizley & Rescorla, 1972). This shows that once conditioning is
complete, the second-order conditioned response no longer de-
pends on the first-order CS. Other results are consistent with the
model-based/stimulus-stimulus position. For example, in sensory
preconditioning, the second stimulus is paired with the first stim-
ulus, and the first stimulus is only then paired with the US
(Brogden, 1939; Rizley & Rescorla, 1972). Once conditioning is
complete, the second-order CS evokes a conditioned response even
though it was never paired with the revalued, first-order CS. This
shows that conditioning can occur even if the training schedule
does not permit the backward propagation of reward to the second-
order CS.

Physiological studies. Some of the strongest evidence for TD
learning comes from studies of the phasic responses of dopamine
neurons to rewards and reward-predicting stimuli. The dopamine
response conforms to basic properties of the reward prediction
error signal in classical and instrumental tasks (Pan, Schmidt,
Wickens, & Hyland, 2005; Schultz, 1998), and during self-
initiated movement sequences (Wassum, Ostlund, & Maidment,
2012). More nuanced tests substantiate the dopamine prediction
error hypothesis. First, dopamine neurons respond to the earliest
predictors of reward in classical and instrumental conditioning
tasks (Schultz, Apicella, & Ljungberg, 1993). Second, dopamine
neurons respond more strongly to stimuli that predict probable
rewards (Fiorillo, Tobler, & Schultz, 2003) and rewards with large
magnitudes (Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006;
Satoh, Nakai, Sato, & Kimura, 2003; Tobler, Fiorillo, & Schultz,
2005). Additionally, when probability and magnitude are crossed,
dopamine neurons respond to expected value rather than to the
constituent parts (Tobler, Fiorillo, & Schultz, 2005). Third, in
blocking paradigms, animals fail to learn associations between
blocked stimuli and rewards. Accordingly, dopamine neurons re-
spond more weakly to blocked stimuli than to unblocked stimuli
(Waelti, Dickinson, & Schultz, 2001). Fourth and finally, animals
and humans discount delayed rewards (Frederick, Loewenstein, &
O’Donoghue, 2002). Dopamine neurons also respond more weakly
to stimuli that predict delayed rewards (Kobayashi & Schultz,
2008; Roesch, Calu, & Schoenbaum, 2007).

fMRI studies. Researchers have attempted to identify predic-
tion error signals in humans using fMRI. Many experiments have
examined BOLD responses to parametric manipulations expected
to produce prediction errors. Others have used hidden-variable
analyses in conjunction with TD models to identify regions where
activation correlates with a prediction error signal. Both ap-
proaches consistently show that prediction errors modulate activity
throughout the striatum, a region densely innervated by dopamine
neurons (Berns, McClure, Pagnoni, & Montague, 2001; Delgado,
Locke, Stenger, & Fiez, 2003; McClure, Berns, & Montague,
2003; O’Doherty et al., 2004; O’Doherty, Hampton, & Kim, 2007;
Pagnoni, Zink, Montague, & Berns, 2002; Rutledge, Dean, Caplin,
& Glimcher, 2010).

A characteristic feature of the TD learning signal and of dopa-
mine responses is that they propagate back to the earliest outcome
predictor. This is also true of BOLD responses. In one illustrative
study, participants underwent appetitive conditioning (O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003). Activity in the ventral
striatum at the time of reward delivery conformed to a prediction
error signal. The BOLD response was maximal when a pleasant
liquid was unexpectedly delivered, and the response was minimal
when a pleasant liquid was unexpectedly withheld. Activity at the
time of stimulus presentation also conformed to a prediction error
signal. The BOLD response was greatest when the stimulus pre-
dicted delivery of the pleasant liquid.

Other fMRI studies have replicated the finding that conditioned
stimuli evoke neural prediction errors during classical and instru-
mental conditioning (Abler, Walter, Erk, Kammerer, & Spitzer,
2006; O’Doherty et al., 2004; Tobler, O’Doherty, Dolan, &
Schultz, 2005). In one such study, cues predicted rewards with
probabilities ranging from 0% to 100% (Abler et al., 2006). Fol-
lowing cue presentation, activity in the nucleus accumbens (NAc)
increased as a linear function of reward probability, and following
reward delivery, activity increased as a linear function of the
unexpectedness of reward. NAc activity also increased with antic-
ipated reward magnitude (Knutson, Taylor, Kaufman, Peterson, &
Glover, 2005).

In these examples, conditioning was successful. In contrast,
when a blocking procedure is used, participants fail to associate
blocked stimuli with rewards (Tobler et al., 2005). Paralleling this
behavioral result, the ventral putamen showed weaker responses to
blocked stimuli than to unblocked stimuli. Additionally, and as
anticipated by TD learning, the ventral putamen showed greater
responses to rewards that followed blocked stimuli than to rewards
that followed unblocked stimuli.

These studies support the notion that the BOLD signal in the
striatum conveys a model-free report. One recent study challenges
that notion, however (Daw, Gershman, Seymour, Dayan, & Dolan,
2011). In that study, participants made two selections before
receiving feedback. The first selection led to one of two interme-
diate states with fixed probabilities (Figure 2). Participants mem-

Figure 2. Transition structure in sequential choice task. The first selec-
tion lead to one of two intermediate states with fixed probabilities, and the
second selection was rewarded probabilistically. From “Model-Based In-
fluences on Humans’ Choices and Striatal Prediction Errors,” by N. D.
Daw, S. J. Gershman, B. Seymour, P. Dayan, and R. J. Dolan, 2011,
Neuron, 69, Figure 1, p. 1205. Copyright 2011 by Elsevier. Reprinted with
permission.
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orized these probabilities in advance. The second selection, made
from the intermediate state, was rewarded probabilistically. Par-
ticipants learned these probabilities during the experiment. Model-
based and model-free RL make opposing predictions for how
outcomes will influence first-stage selections. Model-free RL cred-
its first- and second-stage selections for outcomes, and so predicts
that participants will repeat first-stage selections whenever they
receive reward. Model-based RL only credits second-stage selec-
tions for outcomes, and so predicts that participants will favor the
first-stage selection that leads to the most rewarding intermediate
state. Consequently, model-based RL predicts that the individual
will repeat first-stage selections when the expected transition oc-
curs and the trial is rewarded, and when the unexpected transition
occurs and the trial is not rewarded.

Participants’ behavior reflected a blend of these predictions:
they were more likely to repeat the initial selection when the trial
was rewarded, and they did so most often when the initial selection
led to the expected intermediate state. To account for these results,
Daw et al. (2011) proposed a hybrid model that combined esti-
mated action values from model-free and model-based controllers.
Daw et al. generated prediction errors using TD learning. They
also generated prediction errors based on the difference between
the value of the actual outcome and the value predicted by the
model-based controller. BOLD responses in the ventral striatum
correlated with the difference between outcomes and model-free
predictions, supporting the idea that the ventral striatum is in-
volved in TD learning. BOLD responses further correlated with the
difference between outcomes and model-based predictions, how-
ever. Daw et al. (2011) concluded that the ventral striatum did not
literally implement model-based RL, as this result might suggest.
Rather, other regions that implement model-based RL influenced
the utility values represented in the ventral striatum.

Electrophysiological studies. Researchers have also at-
tempted to identify neural prediction errors in humans using scalp-
recorded event-related potentials (ERPs). Early studies revealed a
frontocentral error-related negativity (ERN) that appeared 50 to
100 ms after error commission (Falkenstein, Hohnsbein, Hoor-
mann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin,
1993). Subsequent studies have revealed a frontocentral negativity
that appears 200 to 300 ms after the display of aversive feedback
(Miltner, Braun, & Coles, 1997). Many features of this feedback-
related negativity (FRN) indicate that it relates to reward predic-
tion error. First, the FRN amplitude depends on the difference
between actual and expected reward (Holroyd & Coles, 2002;
Walsh & Anderson, 2011a, 2011b). Second, the FRN amplitude
correlates with posterror adjustment (M. X. Cohen & Ranganath,
2007). Third, converging methodological approaches indicate that
the FRN originates from the anterior cingulate (Holroyd & Coles,
2002), a region implicated in cognitive control and behavioral
selection (Kennerley, Walton, Behrens, Buckley, & Rushworth,
2006). These ideas have been synthesized in the reinforcement
learning theory of the error-related negativity (RL–ERN), which
proposes that midbrain dopamine neurons transmit a prediction
error signal to the anterior cingulate and that this signal reinforces
or punishes actions that preceded outcomes (Holroyd & Coles,
2002; Walsh & Anderson, 2012).

According to RL–ERN, outcomes and stimuli that predict out-
comes should be able to evoke an FRN. To test this hypothesis,
researchers have examined whether predictive stimuli produce an

FRN. In some studies, cues perfectly predicted outcomes. In those
studies, ERPs were more negative after cues that predicted losses
than after cues that predicted wins (Baker & Holroyd, 2009;
Dunning & Hajcak, 2007). In other studies, cues provided proba-
bilistic information about outcomes. There too, ERPs were more
negative after cues that predicted probable losses than after cues
that predicted probable wins (Holroyd, Krigolson, & Lee, 2011;
Liao, Gramann, Feng, Deák, & Li, 2011; Walsh & Anderson,
2011a). In each case, the latency and topography of the cue-locked
FRN coincided with the feedback-locked FRN.

RL–ERN is but one account of the FRN (Holroyd & Coles,
2002). According to another proposal, the anterior cingulate mon-
itors response conflict (Botvinick, Braver, Barch, Carter, & Cohen,
2001; Yeung, Botvinick, & Cohen, 2004). Upon detecting coact-
ive, incompatible responses, the anterior cingulate signals the need
to increase control in order to resolve the conflict. Consistent with
this view, ERP studies have revealed a frontocentral negativity
called the N2 that appears when participants must inhibit a re-
sponse (Pritchard, Shappell, & Brandt, 1991). Source localization
studies indicate that the N2, like the FRN, arises from the anterior
cingulate (van Veen & Carter, 2002; Yeung et al., 2004). Further,
fMRI studies have reported enhanced activity in the anterior cin-
gulate following incorrect responses as well as correct responses
under conditions of high response conflict (Carter et al., 1998;
Kerns et al., 2004).

RL–ERN focuses on the ERN and the FRN, whereas the conflict
monitoring hypothesis focuses on the N2 and the ERN. RL–ERN
can be augmented to account for the N2, however, by assuming
that conflict resolution incurs cognitive costs, penalizing high
conflict states (Botvinick, 2007). Alternatively, high conflict states
may have lower expected value because they engender greater
error likelihoods (Brown & Braver, 2005).

Goal Gradient

Hull (1932) noted that reactions to stimuli followed immediately
by rewards were conditioned more strongly than reactions to
stimuli followed by rewards after a delay. Based on this observa-
tion, he proposed that the power of primary reinforcement trans-
ferred to earlier stimuli, producing a spatially extended goal gra-
dient that decreased in strength with distance from reward. The
concept of the goal-gradient has inspired much research on maze
learning. This theory predicts that errors will occur most frequently
at early choice points in mazes. Because future reward is dis-
counted, the values of states and actions most remote from reward
are near zero. As the difference between the values of actions
decreases, the probability that the individual will select the correct
response with a softmax selection rule (Equation 4) decreases as
well.

Consistent with these predictions, rats make the most errors at
choice points furthest from reward (Spence, 1932; Tolman &
Honzik, 1930). Researchers have since identified other factors that
affect maze navigation. For example, subjects enact incorrect
responses that anticipate future choice points (Spragg, 1934), they
more frequently enter blinds oriented toward the goal (Spence,
1932), and they commit a disproportionate number of errors in the
direction of more probable turns (Buel, 1935). Although a multi-
tude of factors affect maze learning, the backward elimination of
blinds operates independently of these factors.
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Fu and Anderson (2006) asked whether humans also show a
goal gradient. In their task, participants navigated through rooms
in a virtual maze (Figure 3). Each room contained one object that
marked its identity, and two cues that participants chose between.
After choosing a cue, participants transitioned to a room that
contained a new object and cues. If participants selected the correct
cues in Rooms 1, 2, and 3, they arrived at the exit. If they made an
incorrect selection in any room, they ultimately arrived at a dead
end. Participants only received feedback upon reaching the exit or
a dead end, and upon reaching a dead end, they were returned to
the last correct room. The goal-gradient hypothesis predicts that
errors will be most frequent in Room 1, followed by Room 2, and
then by Room 3. The results of the experiment confirmed this
prediction.

Fu and Anderson (2006) fit a SARSA model to their data. Like
participants, the model produced a negatively accelerated goal
gradient. This is a natural consequence of discounting future
reward (i.e., application of � in Equation 1). The maximum reward
that can reach a room, RD, decreases as a function of its distance
(D) from the exit,

RD � r · �D. (13)

The discount term (�) controls the steepness of the gradient. This
function is equivalent to one derived by Spence (1932) to describe
the goal gradient in rat maze learning.

This interpretation of the goal gradient is in terms of model-free
RL. Might a model-based controller also exhibit a goal gradient?
Yes. Future reward is discounted in some instantiations of forward
search (Equations 11 and 12). Consequently, differences among
state and action values decrease with their distance from reward. In
other versions of model-based RL, future reward is not discounted
but error is accrued with each subsequent step in forward search
(Daw et al., 2005). The compounding of error with increasing
search depth would yield a goal gradient as well.

Eligibility traces. Fu and Anderson’s (2006) model predicted
slower learning in Room 1 than was observed. This relates to a
weakness of TD learning: when reward follows a delay, credit
slowly propagates to distant states and actions. Walsh and Ander-
son (2011a) directly compared the behavior of TD models with
and without eligibility traces in a sequential choice task. Like Fu
and Anderson, they found that models without eligibility traces

learned the initial choice in a sequence more slowly than partici-
pants did. The addition of eligibility traces resolved this discrep-
ancy.

In these examples, deviations between model predictions and
behavior were slight. Even moderately complex problems exacer-
bate the challenge of assigning credit to distant states and actions,
however (Janssen & Gray, 2012). For instance, Gray, Sims, Fu,
and Schoelles (2006) found that Q-learning required 100,000 trials
to match the proficiency of human participants after 50 trials.
Eligibility traces greatly accelerate learning in such cases where
rewards are delayed by multiple states.

Latent Learning and Detour Behavior

Latent learning. Work aimed at distinguishing between
stimulus–response and cognitive learning theories provided early
support for model-based RL. Two classic examples are latent
learning and detour behavior. Latent learning experiments examine
whether individuals can learn about the structure of the environ-
ment in the absence of reward. In one such experiment, rats
navigated through a compound T-maze until they reached an end
box (Blodgett, 1929). Following several unrewarded sessions, food
was placed at the end box. After discovering the food, rats com-
mitted far fewer errors as they navigated to the end box in the next
trial. This indicates that they acquired information about the struc-
ture of the maze during training and in the absence of reward.5

In a recent study of latent learning in humans, participants
navigated through two intermediate states before arriving at a
terminal state (Gläscher, Daw, Dayan, & O’Doherty, 2010). Be-
fore performing the task, they learned the transition probabilities
leading to terminal states, and they then learned the reward values
assigned to terminal states. Gläscher et al. (2010) compared the
behavior of three models to participants’ performance at test. The
SARSA model used reward prediction errors to learn action values
from experience during the test phase. The FORWARD model
used knowledge of the transition and reward probabilities to cal-
culate action values prospectively with policy iteration. Last, the
HYBRID model averaged action values from the separate SARSA
and FORWARD models. Gläscher et al. found that the HYBRID
model best matched participants’ behavior. The FORWARD com-
ponent accounted for the fact that participants immediately exer-
cised knowledge of the transition and reward functions, and the
SARSA component accounted for the fact that they continued to
learn from experience during the test.

By collecting neuroimaging data as participants performed the
task, Gläscher et al. (2010) could search for neural correlates of
model prediction errors. Reward prediction errors (�t) generated by
the SARSA model correlated with activity in the ventral striatum,
corroborating other reports of this region’s involvement in model-
free RL. State prediction errors (�SPE; Equation 9) generated by the
FORWARD model correlated with activity in the intraparietal
sulcus and the latPFC, indicating that these regions contribute to
the acquisition or storage of a state transition function. The finding
that the latPFC represents transitions is consistent with the role of

5 Simply removing the rat from the terminal section of the maze may be
rewarding. Control experiments indicate that this is unlikely to account
completely for latent learning effects, however (Thistlethwaite, 1951).

Figure 3. Experiment interface (left) and maze structure with correct path
in gray (right; Fu & Anderson, 2006). To exit the maze, participants needed
to select the correct cues in Rooms 1, 2, and 3.
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this region in planning (Fuster, 1997; Mushiake et al., 2006; Owen,
1997; Saito et al., 2005; Shallice, 1982).

Detour behavior. Detour behavior experiments examine how
individuals adjust their behavior upon detecting environmental
change. In one such study (Tolman & Honzik, 1930), rats selected
from three paths, two of which shared a segment leading to the end
box (Figure 4). When Path 1 was blocked at point A, rats imme-
diately switched to Path 2, and when Path 1 was blocked at point
B, rats immediately switched to Path 3. This indicates that they
revised their internal model upon encountering detours and that
they used this revised model to identify the shortest remaining
path.

Simon and Daw (2011) asked whether humans were as sensitive
to detours. In their task, participants navigated through a grid of
rooms, some of which contained known rewards. Doors connect-
ing the rooms changed between trials, eliminating old paths and
creating new paths. Simon and Daw fit model-free and model-
based controllers to each participant’s behavior and found that the
model-based controller best accounted for nearly all participants’
choices. This result indicates that humans, like rats, update their
model of the environment upon encountering detours and that they
use this model to infer the shortest path to the goal.

Simon and Daw (2011) used fMRI to identify neural correlates
of model-free and model-based prediction errors. Activity in the
dorsolateral PFC and OFC correlated with model-based values.
Additionally, activity in the ventral striatum, though correlated
with model-free values, was more strongly correlated with model-
based values. Simon and Daw also identified regions that re-
sponded according to the expected value of the reward in the next
room. This analysis revealed significant clusters of activation in
the superior frontal cortex and the parahippocampal cortex.

The discovery that model-based value signals correlated with
activity in the dorsolateral PFC and OFC is consistent with the

purported role of these regions in planning. Additionally, the
finding that future reward correlated with activity in the PFC and
MTL is consistent with the idea that these regions contribute to
goal-directed behavior. The discovery that activity in the ventral
striatum correlated more strongly with model-based than with
model-free value signals is surprising, however, because this re-
gion is typically associated with TD learning. As in Daw et al.
(2011), this result need not imply that the striatum itself imple-
ments model-based RL. Rather, other regions that implement
model-based RL may bias striatal representations of action val-
ues.6

Partially Observable Markov Decision Processes
(POMDP)

Most studies of choice involve Markov decision processes (MDP).
The key feature of MDPs is that state transitions and rewards depend
on the current state and action, but not on earlier states or actions. An
important challenge is to extend learning theories to partially observ-
able Markov decision processes (POMDPs). In POMDPs, the sys-
tem’s dynamics follow the Markov property, but the individual cannot
directly observe the system’s underlying state. POMDPs can be dealt
with in three ways. First, the individual can simply ignore hidden
states (Loch & Singh, 1998). Second, the individual can maintain a
record of past states and actions to disambiguate the current state
(McCallum, 1995). Third, the individual can maintain a belief state
vector that contains the relative likelihood of each state (Kaelbling,
Littman, & Cassandra, 1998). We consider each of these alternatives
in turn.

Eligibility traces. In one task that violated the Markov prop-
erty, participants selected from two images (Tanaka et al., 2009).
For some image pairs, monetary reward or punishment was deliv-
ered immediately. For other image pairs, reward or punishment
was delivered after three trials (Figure 5). In trials with delayed
outcomes, the hidden state is the correctness of the response,
which affects the value of the score displayed three trials later.
Tanaka et al. (2009) asked whether participants could learn correct
responses for the outcome-delayed image pairs. Although one
response resulted in a future loss, and the other in a future gain, the
states that immediately followed both responses mapped onto the
same visual percept. Because TD learning calculates future reward
based on the value of the state that immediately follows an action
(Equation 1), this creates a credit assignment bottleneck. Yet
participants learned the correct responses for the outcome-delayed
image pairs.

Tanaka et al. (2009) evaluated two computational models. The
first used internal memory elements to store the past three deci-
sions. The representation of states in this model included the last
three decisions and the current image pair. This representation
restores the Markov property, but expands the size of the state
space. The second model applied TD learning with eligibility
traces to observable states and did not store past decisions. The

6 The basal ganglia are involved in functions beyond reward evaluation.
One recent model proposes that the basal ganglia play a general role in the
conditional routing of information between cortical areas (Stocco, Lebiere,
& Anderson, 2010). By this proposal, striatal activation might reflect the
passage of model-based predictions through the basal ganglia, rather than
the impact of model-based evaluations on striatal learning.

Figure 4. Maze used to assess detour behavior in rats (Tolman & Honzik,
1930). In different trials, detours were placed at points A and B.
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eligibility trace model better accounted for participants’ choices,
while the model with internal memory elements heavily fraction-
ated the state space resulting in slow learning. In a related study,
participants learned the initial and final selections in a sequential
choice task even though the final selection violated the Markov
property (Fu & Anderson, 2008b). Although Fu and Anderson
(2008b) interpreted their results in terms of TD learning, eligibility
traces would be needed to acquire the initial response in their task
as well.

How do eligibility traces allow TD learning to overcome these
credit assignment bottlenecks? Because both actions lead to the
same intermediate state, the intermediate outcome does not adju-
dicate between actions. When the final outcome is delivered, wins
produce positive prediction errors and losses produce negative
prediction errors. Because the initial action remains eligible for
update, the TD model can assign these later, discriminative pre-
diction errors to earlier actions.

We have considered violations of the Markov property in se-
quential choice tasks. Embodied agents face a more pervasive type
of credit bottleneck when perceptual and motor behaviors separate
choices from rewards (Anderson, 2007; Walsh & Anderson, 2009).
For example, in representative instrumental conditioning studies, a
rat chooses between levers, but only receives reward upon entering
the magazine (Balleine, Garner, Gonzalez, & Dickinson, 1995;
Killcross & Coutureau, 2003). In a strict sense, the act of entering
the magazine would block assignment of credit to the lever press.
Eligibility traces are applicable to these credit assignment bottle-
necks as well.

Memory. The second technique for dealing with POMDPs is
to remember past states and actions to disambiguate the current
state (McCallum, 1995). Tanaka et al.’s (2009) memory model,
described in the previous section, did just that. Cognitive archi-
tectures that include a short-term memory component also accom-
plish tasks in this way (Anderson, 2007; Frank & Claus, 2006;
O’Reilly & Frank, 2006; Wang & Laird, 2007). For example, in
the 12-AX task, the individual views a continuous stream of letters
and numbers (O’Reilly & Frank, 2006; Todd, Niv, & Cohen,
2009). The correct response mappings for the current item depend
on the identity of earlier items. As such, the individual must
maintain and update information about context. According to the
gating hypothesis, the prefrontal cortex maintains such contextual
information (O’Reilly & Frank, 2006). The same mechanism that
supports the acquisition of stimulus–response mappings, the do-

pamine predication error signal, teaches the basal ganglia when to
update the contents of working memory. Memory can also be used
to disambiguate states in sequential choice tasks. For example, in
the absence of salient cues, a rat must remember prior moves to
determine its current location in a maze. Wang and Laird (2007)
showed that a cognitive model that used past actions to disambig-
uate the current state better accounted for the idiosyncratic navi-
gation errors of rats than did a model without memory.

Belief states. The final technique for dealing with POMDPs is
to maintain a belief state vector that contains the relative likelihood
of each state (Kaelbling et al., 1998). Calculating these likelihoods
is nontrivial when the underlying state of the system is not ob-
servable; for example, when different events or actions lead proba-
bilistically to different states with identical appearances. Upon
acting and receiving a new observation, the individual updates the
belief state vector. Updated beliefs depend on states’ prior prob-
abilities, and states’ conditional probabilities given the new obser-
vation. When paired with model-based techniques, belief states
allow the individual to calculate the values of actions, weighted
according to the likelihood that the individual is in each state.

Belief states have been used to capture sequential sampling
results (Dayan & Daw, 2008; Rao, 2010). For example, in the
dot-motion detection task, the individual reports the direction in
which an array of dots is moving. Some dots move coherently and
some move randomly. In the dot-motion detection task, states are
the possible directions of motion, observations are the array of
coherent and incoherent dots at each moment, and the belief state
vector contains the subject’s expectations and confidence about the
direction of motion. Belief states have also been used to model
navigational uncertainty (Stankiewicz, Legge, Mansfield, &
Schlicht, 2006; Yoshida & Ishii, 2006). The challenge in these
navigation tasks is to move toward an occluded location while
gathering information to disambiguate one’s current location. In-
terestingly, in sequential sampling and navigation studies, humans
perform worse than ideal observer models (Doshi-Velez & Ghah-
ramani, 2011; Stankiewicz et al., 2006). These shortcomings have
been attributed to errors in updating belief states.

Distributed Outcomes

The problem of temporal credit assignment arises when feed-
back follows a sequence of decisions. A related problem arises
when the consequences of a decision are distributed over a se-
quence of outcomes. This is the case in the Harvard Game, a task
where participants select between an action that increases imme-
diate reward and an action that increases future reward (Herrnstein,
Loewenstein, Prelec, & Vaughan, 1993). Like Aesop’s fabled
grasshopper, humans and animals struggle to forgo immediate
gratification to secure future rewards when confronted with such a
scenario.

In one Harvard Game experiment (Tunney & Shanks, 2002),
participants chose between two actions, left and right. The imme-
diate (or local) reward associated with left exceeded the reward
associated with right by a fixed amount (Figure 6), but the future
(or global) reward associated with both actions grew in proportion
to the percentage of responses allocated to right during the previ-
ous 10 trials. Consequently, selection of left (melioration) in-
creased immediate reward, but selection of right (maximization)
increased total reward. In this and other Harvard Game experi-

Figure 5. Delayed reward task. Some rewards were delivered immedi-
ately (trial t � 1), and some rewards were delivered after a delay (trial t �
3). From “Serotonin Affects Association of Aversive Outcomes to Past
Actions,” by S. C. Tanaka, K. Shishida, N. Schweighofer, Y. Okamoto, S.
Yamawaki, and K. Doya, 2009, Journal of Neuroscience, 29, Figure 1C, p.
15671. Copyright 2009 by the American Psychological Association.
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ments, responses change the probability or magnitude of reward
without altering the observable state of the system. Consequently,
the basic TD model can learn only to meliorate (Montague &
Berns, 2002), as do participants in most Harvard Game experi-
ments.

Yet participants do not always meliorate (Tunney & Shanks,
2002). Four factors increase the percentage of maximizing re-
sponses. First, displaying cues that mark the underlying state of the
system increases maximization (Gureckis & Love, 2009; Herrn-
stein et al., 1993). Second, shortening the intertrial interval in-
creases maximization (Bogacz, McClure, Cohen, & Montague,
2007). Third, maximizing is negatively associated with the length
of the averaging window (i.e., the number of trials over which
response allocation is computed; Herrnstein et al., 1993; Yarkoni,
Braver, Gray, & Green, 2005). Fourth, maximizing is negatively
associated with the immediate difference between the payoff func-
tions for the two responses (Heyman & Dunn, 2002; Warry,
Remington, & Sonuga-Barke, 1999).

The Harvard Game constitutes a POMDP; the probability or
magnitude of reward depends on the current choice and the history
of actions. One could restore the Markov property by providing
participants with information about their action history. Indeed,
displaying cues that mark the underlying state of the system
increases maximization (Gureckis & Love, 2009; Herrnstein et al.,
1993). By restoring the Markov property, cues may allow partic-
ipants to credit actions for future reward based on observable
states. Do POMDP techniques permit maximization when state
cues are absent? Yes. A model with memory elements can record
the history of actions. Such an internal record can disambiguate
states in the same manner as external cues. Likewise, a model with
belief states can learn the rewards associated with each of the
system’s underlying states. The model can then simulate the long-
term utility associated with performing sequences of minimizing
and maximizing responses to decide which yields greater reward.

Eligibility traces provide an especially elegant account of vari-
ous Harvard Game manipulations. Bogacz et al. (2007) modeled
the effect of intertrial interval duration using real-time decaying

eligibility traces. Over long intertrial intervals, traces decayed to
zero, reducing their ability to support learning. Like participants,
the model exhibited maximization when intertrial intervals were
short, and melioration when intertrial intervals were long. Addi-
tionally, as the length of the averaging window increases, and as
the difference between the payoff functions increases, the individ-
ual must integrate outcomes over a larger number of trials before
the value of maximizing exceeds the value of meliorating. Melio-
ration may ensue when the decay of eligibility traces fails to permit
integration of outcomes over a sufficient number of trials. In sum,
a TD model with eligibility traces can account for the results of
several Harvard Game manipulations.

Hierarchical Reinforcement Learning

As the field of reinforcement learning has matured, focus has
shifted to factors that limit its applicability. Foremost among these
is the scaling problem: the performance of standard reinforcement
learning techniques declines as the number of states and actions
increase. Hierarchical reinforcement learning (HRL) is one solu-
tion to the scaling problem (Barto & Mahadevan, 2003; Botvinick,
Niv, & Barto, 2009; Dietterich, 2000). The HRL framework is
expanded to include temporally abstract options, representations
composed of primitive, interrelated actions. For instance, the ac-
tions involved in adding sugar to coffee (grasp spoon, scope sugar,
lift spoon to cup, deposit sugar) are represented by a single
high-level option (“add sugar”). Still more complex skills (“make
coffee”) are assembled from high-level options (Botvinick et al.,
2009).

In HRL, each option has a designated subgoal. Pseduo-reward is
issued upon subgoal completion and is used to reinforce the
actions selected as the individual enacted an option. External
reward, in turn, is issued upon task completion and is used to
reinforce the options selected as the individual performed the task.
This segmentation of the learning episode enhances scalability in
two ways. First, because pseudorewards are issued following sub-
goal completion, the individual need not wait until the end of the
task to receive feedback. Thus, reward is not discounted as sub-
stantially, and the actions that comprise an option are insulated
against errors that occur as the individual pursues later subgoals.
Second, HRL allows the individual to learn more efficiently from
experience. When options can be applied to new tasks (e.g., adding
sugar to coffee, and then adding sugar to tea), the individual can
recombine options rather than relearn the larger number of prim-
itive actions they entail.

One psychological prediction of HRL is that credit assignment
will occur when participants make progress toward subgoals, even
when subgoals do not directly relate to primary reinforcement. To
test this hypothesis, Ribas-Fernandes et al. (2011) conducted an
experiment where participants navigated a cursor to an intermedi-
ate target and then to a final target. The location of the intermediate
target sometimes changed unexpectedly. Location shifts that de-
creased the distance to the intermediate target without decreasing
the distance to the final target triggered activation in the anterior
cingulate cortex, a region implicated in signaling primary rewards.
The shift would not be expected to produce a standard reward
prediction error because it did not reduce the total distance to the
final goal. The shift would be expected to produce a pseudoreward
prediction error, however, because it did reduce the distance to the

Figure 6. Harvard Game payoff functions (Tunney & Shanks, 2002).
Payoff for meliorating (choose left) and maximizing (choose right) as a
function of the percentage of maximizing responses during the previous 10
trials.
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intermediate subgoal. Thus, the ACC may also signal pseu-
dorewards, as in the HRL framework.

Disorders and Addiction

Reinforcement learning has been applied to the study of psy-
chological disorders (Maia & Frank, 2011; Redgrave et al., 2010;
Redish, Jensen, & Johnson, 2008). For example, the initial stage of
Parkinson’s disease is characterized by the loss of dopaminergic
inputs from the SNc to the striatum (Maia & Frank, 2011; Redish
et al., 2008). Given that these regions support model-free control,
it is not surprising that Parkinson patients display an impaired
ability to acquire and express habitual responses. Reinforcement
learning has also been applied to the study of addiction. Redish et
al. (2008) describe 10 vulnerabilities in the decision making sys-
tem. These constitute points through which drugs of addiction can
produce maladaptive responses. Some vulnerabilities relate to the
goal-direct system; for example, drugs that alter memory storage
and access could affect model-based, forward search. Other vul-
nerabilities relate to the habit system; for example, drugs that
artificially increase dopamine could inflate model-free, action
value estimates.

The reinforcement learning framework offers insight into defi-
cits in sequential choice as well. For instance, “impulsivity” is
defined as choosing a smaller immediate reward over a larger
delayed reward. This is the case in addiction: the individual selects
behaviors that are immediately rewarding but ultimately harmful.
Addicts discount future reward more steeply than do nonaddicts.
This was demonstrated in an experiment where participants chose
between a large delayed reward and smaller immediate rewards
(Madden, Petry, Badger, & Bickel, 1997). Opioid-dependent par-
ticipants accepted smaller immediate rewards than did controls, a
result that holds across other types of addiction (B. Reynolds,
2006).

Impulsivity has been associated with changes in the availability
of the neurotransmitter serotonin (Mobini, Chiang, Ho, Bradshaw,
& Szabadi, 2000). Diminished serotonin levels caused by lesions
and pharmacological manipulations increase impulsivity. The im-
pact of serotonin on choice behavior has been simulated in the
reinforcement learning framework by decreasing the eligibility
trace decay term or by lowering the temporal discounting rate
(Doya, 2000; Schweighofer et al., 2008; Tanaka et al., 2009).
Decreasing the eligibility trace decay term (�) reduces the effi-
ciency of propagating credit from delayed outcomes to earlier
states and actions. Lowering the discounting rate (�), in turn,
minimizes the contribution of future outcomes to the calculation of
utility values. In both cases, the net result is impulsive behavior.

Discussion

Psychologists have long distinguished between habitual and
goal-directed behavior. This distinction was made rigorous in
stimulus–response and cognitive theories of learning during the
behaviorist era. Although this distinction has carried forward in
studies of human and animal choice, the apparent dichotomy
between these perspectives has given way to a unified view of
habitual and goal-directed control as complementary mechanisms
for action selection. Similar ideas have emerged in the field of
artificial intelligence. Model-free RL resonates with stimulus–

response theories and the notion of habitual control, whereas
model-based RL resonates with cognitive theories and the notion
of goal-directed control.

The pursuit of such compatible ideas in the fields of psychology
and artificial intelligence is not coincidental. Humans and animals
regularly face the very problems that reinforcement learning meth-
ods are designed to overcome. One such problem is temporal credit
assignment. When feedback follows a sequence of decisions, how
should credit be assigned to the intermediate actions that comprise
the sequence? Model-free RL solves this problem by learning
internal value functions that store the sum of immediate and future
rewards expected from each state and action. Model-based RL
solves this problem by learning state transition and reward func-
tions, and by using this internal model to identify actions that will
result in goal attainment. Not only do these techniques have a
natural interpretation in terms of human and animal behavior, but
they also provide a useful framework for understanding neural
reward valuation and action selection. Reciprocally, the manner in
which humans and animals cope with temporal credit assignment
provides a model for designing artificial learning systems that can
solve the very same problem (Sutton & Barto, 1998).

Throughout this review, we have emphasized the utility of RL as
a model of reward valuation and action selection. We now explore
three remaining questions that are central to a unified theory of
habitual and goal-directed control. The answers to these questions
have ramifications for theories of sequential choice, and decision
making more generally.

What Factors Promote Model-Based and Model-Free
Control?

Under what circumstances is behavior model-based, and under
what circumstances is it model-free? Animal conditioning studies
are informative with respect to this question. Animals are sensitive
to outcome devaluation and contingency degradation early in
conditioning but not after extended training (Adams & Dickinson,
1981; Dickinson, Squire, Varga, & Smith, 1998), a result that has
been replicated with humans (Tricomi, Balleine, & O’Doherty,
2009). This suggests that with overtraining, goal-directed (i.e.,
model-based) control gives way to habitual (i.e., model-free) con-
trol. Extending this result to sequential choice, Gläscher et al.
(2010) found that participants’ behavior was initially predicted by
a model-based controller, and later by a model-free controller.

Secondary tasks that consume attention and working memory
also shift the balance from model-based to model-free control. In
two experiments, Fu and Anderson (2008a, 2008b) asked partici-
pants to make a pair of decisions before receiving feedback.
Participants in the dual-task condition performed a memory-
intensive n-back task as they made selections. Although partici-
pants ultimately learned both choices in the single- and dual-task
conditions, the order in which they learned the choices differed.
Participants in the dual-task condition learned the second choice
before the first. This is consistent with a TD model in which
reward propagates from later states to earlier states. Conversely,
participants in the single-task condition learned the first choice
before the second. This is consistent with a model in which each
of the choices and the outcome are encoded in memory, but the
first choice is encoded more strongly owing to a primacy advan-
tage (Drewnowski & Murdock, 1980). Likewise, Otto, Gershman,
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Markman, and Daw (in press) found that having participants
perform a demanding secondary task engendered reliance upon a
model-free control strategy in the primary, sequential choice task.
In the absence of the secondary task, participants reverted to a
model-based control strategy.

Finally, time constraints evoke model-free control. In one study
that examined this issue, participants learned the transition func-
tion for a grid navigation task (Fermin, Yoshida, Ito, Yoshimoto,
& Doya, 2010). At test, participants navigated to a novel location
or to a well-rehearsed location. Fermin et al. (2010) manipulated
start time by presenting the go signal immediately after the goal
location appeared, or after a 6-s delay. Prestart delay facilitated
performance when participants navigated to a novel location but
not when they navigated to a well-rehearsed location. This sug-
gests that participants planned the sequence of moves to the novel
location in the 6-s start time condition and that they used an
automatized sequence of moves to navigate to well-rehearsed
locations in both start time conditions. The finding that prestart
delay facilitated performance when participants navigated to novel
locations highlights the time costs associated with forward search.
This echoes other findings that planning times increase with search
depth and complexity (Hayes, 1965; Owen et al., 1995; Simon &
Daw, 2011).

How Does the Cognitive System Arbitrate Between
Model-Based and Model-Free Control?

According to several proposals, arbitration between model-free
and model-based control is guided by two conflicting constraints
(Daw et al., 2005; Fermin et al., 2010; Keramati, Dezfouli, &
Piray, 2011). First, the computational simplicity of model-free RL
permits rapid response selection, whereas model-based RL re-
quires a time consuming search. Second, model-free RL is inflex-
ible in adapting to changing conditions, whereas model-based RL
can quickly adapt with experience. Consequently, model-based RL
is initially favored for its greater accuracy, and model-free RL is
ultimately favored for its greater efficiency. When approximation
techniques such as pruning are employed, model-based estimates
remain uncertain despite extended training, further favoring the
transition to model-free control (Daw et al., 2005).

The tradeoff between speed and accuracy emerges naturally in
the integrated cognitive architecture, Adaptive Control of
Thought—Rational (ACT–R; Anderson, 2007). ACT–R contains
two types of knowledge; production rules that specify how to act
when a set of conditions is met, and declarative knowledge that
consists of propositional facts stored in long term memory. Pro-
cedural learning, which is driven by external reward, is analogous
to model-free RL, whereas the coordinated retrieval of information
from declarative memory fulfills a function akin to model-based
RL. Because retrievals are instantiated within production rules,
this path to action selection is also sensitive to external reward.

Through the process of production compilation, actions based
on declarative knowledge are compiled into more specific rules
that map stimuli directly to responses, bypassing time-consuming
retrievals (Taatgen, Huss, Dickison, & Anderson, 2008). Ulti-
mately, procedural and declarative knowledge favor the same
responses, but decisions based on procedural knowledge can be
enacted more rapidly. Consequently, ACT–R comes to favor spe-
cialized productions over flexible, but slow, retrievals. One advan-

tage to implementing choice models within this production system
framework is that it permits arbitration among controllers without
evoking a homunculus. The same machinery that allows ACT–R to
choose between productions, reinforcement signals arising from
dopamine neurons, allows ACT–R to choose between model-free
and model-based control.

What Alternate Frameworks Exist for Studying
Reward Learning?

Although RL explains a wide range of results in reward learn-
ing, other proposals have been advanced. For example, a selec-
tionist approach to reinforcement has been influential in the field
of behavioral analysis (Donahoe, Burgos, & Palmer, 1993;
Thorndike, 1905). By this view, adaptive behavior arises as a
byproduct of the same forces that shape Darwinian evolution:
variability, selection, and retention. Variability describes the class
of potential behaviors, selection describes the potentiating effects
of reinforcement on behavior, and retention describes the physio-
logical changes that permit maintenance of adaptive responses.
McDowell (2004) developed a model of instrumental conditioning
based on such evolutionary principles. He represented actions as
“populations” of behavior. Using an evolutionary reinforcement
learning algorithm, McDowell demonstrated that actions similar to
those rewarded became more prevalent in the population.

Selectionism provides an interesting counterpoint to model-free
RL. Models such as McDowell’s (2004) account for operant con-
ditioning phenomena neglected in work on reinforcement learning;
for example, response rates under different schedules of reinforce-
ment. Yet there are striking similarities between selectionism and
model-free RL (Donahoe et al., 1993). In both, learning only
occurs contemporaneously with violations of expectation, classical
and operant responses are acquired in the same manner, and
rewards influence behavior by strengthening associations between
sensory inputs and motor outputs. Further, in their seminal phys-
iological account of selectionism, Donahoe et al. (1993) attributed
the potentiating effects of reinforcement to the release of dopa-
mine. Even the differences between selectionism and model-free
RL may be more apparent than real. For example, although most
RL models treat responses discretely rather than as a population of
behaviors, techniques exist for applying RL to continuous, graded
response categories (Sutton & Barto, 1998). More work is needed
to determine whether and how the predictions of selectionism
differ from those of model-free RL.

Bayesian techniques have also been applied to reward learning.
Theories of this form infer a model of the latent structure of the
environment and use this model to predict reward probability
(Courville, Daw, & Touretzky, 2006). In the latent cause model, an
exemplary Bayesian theory, stimulus and outcome are jointly
attributed to a hidden variable (Courville et al., 2006; Gershman &
Niv, 2012). Upon viewing a stimulus, the individual infers the
latent cause in order to predict the likely outcome.

The latent cause model accounts for the acquisition and extinction
of conditioned responses in a manner distinct from associative theo-
ries. The individual attributes the conditioned stimulus and outcome
to one latent cause during acquisition, and the individual attributes the
conditioned stimulus and the absence of the outcome to a second
latent cause during extinction (Gershman, Blei, & Niv, 2010). Re-
newal, the finding that the conditioned response is recovered rapidly
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when the individual is returned to the training context, is an emergent
property of the latent cause model: The context change supports the
inference that the initial latent cause is again active.

The latent cause model accounts for other conditioning phenomena
that challenge associative theories. For example, the partial-
reinforcement extinction effect refers to the fact that extinction is
slower following training in which the conditioned stimulus is par-
tially reinforced (Capaldi, 1957). Associative theories incorrectly pre-
dict that extinction will occur rapidly in such cases because the
strength of association between the conditioned stimulus and outcome
is weak to begin with. The latent cause model, in contrast, correctly
predicts that extinction will occur gradually. When the change in
reinforcement rate is large, the model is more likely to assign a new
latent cause to the extinction context, but when the change is small,
the model is less likely to assign a new latent cause (Gershman et al.,
2010). Latent inhibition, the finding that conditioning is slower when
the animal is first preexposed to the stimulus in the absence of the
outcome (Lubow, 1989), also challenges associative models.7 The
latent cause theory explains this effect in terms of the animal’s
inference that the same cause is active during the preexposure and
conditioning phases. Because no outcome followed the stimulus dur-
ing preexposure, the animal does not expect for an outcome to follow
the stimulus during conditioning.

The latent cause model accounts for an impressive scope of con-
ditioning phenomena, many of which fall beyond associative theories
like TD learning. As with all existing theories, however, the latent
cause model does not account for all conditioning results (Gershman
& Niv, 2012). In addition to exploring the many yet unexplained
results, it would be interesting to generalize the latent cause model to
the case of instrumental conditioning. Belief states constitute a Bayes-
ian solution to the problem of partial observability (Kaelbling et al.,
1998). Likewise, the latent cause model provides a way to infer the
underlying world state, which can serve as a basis for action selection.
It would also be interesting to examine how and when the organism
infers the existence of a new latent cause. Redish, Jensen, Johnson,
and Kurth-Nelson (2007) proposed a solution in the form of a ‘state
splitting’ mechanism that is activated by tonically low dopaminergic
signals, which indicate that the environment has changed. Bayesian
techniques for structural discovery, which may be viewed as consti-
tuting a more abstract level of analysis than RL, exist as well (Cour-
ville et al., 2006; Kemp & Tenenbaum, 2008; Sims, Neth, Jacobs, &
Gray, 2013).

Conclusion

In this review, we have examined connections between stimulus–
response and cognitive theories, habitual and goal-directed control,
and model-free and model-based RL. A chief strength of reinforce-
ment learning techniques is their ability to overcome the problem of
temporal credit assignment. Behavioral studies of sequential choice
suggest that humans and animals solve this problem in a similar way.
Moreover, neuroscientific investigations have begun to reveal how
model-free and model-based RL are instantiated neurally.

7 Associative theories can account for latent inhibition, however, by
assuming that associability, a parameter akin to learning rate, is dynamic.
For example, Maia (2009) demonstrated how a Kalman filter can be used
to adjust stimulus associability in a statistically optimal manner.
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