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Abstract

To function well in an unpredictable environment using unreliable components, a system must

have a high degree of robustness. Robustness is fundamental to biological systems and is an

objective in the design of engineered systems such as airplane engines and buildings. Cognitive

systems, like biological and engineered systems, exist within variable environments. This raises

the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of

this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We

identify three mechanisms that enhance robustness in biological and engineered systems: system
control, redundancy, and adaptability. After surveying the psychological literature for evidence of

these mechanisms, we provide simulations illustrating how each contributes to robust cognition in

a different psychological domain: psychomotor vigilance, semantic memory, and strategy selec-

tion. These simulations highlight features of a mathematical approach for quantifying robustness,

and they provide concrete examples of mechanisms for robust cognition.

Keywords: Robustness; System control; Redundancy; Adaptability; Cognitive systems; Computer

simulation

1. Introduction

Robustness is the ability of a system to maintain its function despite perturbation. To

survive in an unpredictable environment using unreliable components, a system must be

robust. Robustness is fundamental to biological systems (Hammerstein, Hagen, Herz, &

Herzel, 2006; Kitano, 2004). For example, chemical reactions that produce circadian

rhythms must occur precisely despite widespread variation in ambient temperature (Hata-

keyama & Kaneko, 2012). Robustness is also an objective in the design of engineered

systems. For example, airplane engines must produce adequate thrust at different altitudes

(Reinman, Ayer, Davan, Devore, & Finley, 2012) and buildings must withstand dynamic
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forces (Starossek & Haberland, 2012). The capacity for robust responses to environmental

variation is arguably a basic property of all complex, evolved systems (Hammerstein &

Stevens, 2012), whether biological or artifactual.

Cognitive systems, like biological and engineered systems, exist within variable envi-

ronments. This means that robustness is a key property of cognitive systems as well.1

Indeed, neural circuits are frequently described as being robust (Cain, Barreiro, Shalden,
& Shea-Brown, 2013; Noppeney, Friston, & Price, 2004) and capacities such as vision

and memory are often called robust (Taatgen, Huss, Dickison, & Anderson, 2008;

Wyatte, Curran, & O’Reilly, 2012). Moreover, the decision strategies, or heuristics, that

people use are commonly said to be robust (Gigerenzer & Gaissmaier, 2011).

Despite an emerging consensus in the cognitive science community that robustness is a

key property of cognition, there has been no serious attempt to identify the underlying

mechanisms that allow cognitive systems to achieve this property. In this study, we take

on precisely that objective—to identify a set of mechanisms for robust cognition.

Cognitive scientists make a distinction between representation and process. Although

this is a valid distinction, in cognitive systems, “representation and process are inextrica-

bly interwoven, so that if our research teaches us something about one of them, it inevita-

bly teaches us something about the other” (Simon, 1982, p. 334). Thus, our search for

mechanisms includes both representations and processes that enhance robustness.

We begin by introducing robustness with examples from biology and engineering. These

examples establish a multidisciplinary view of robustness and reveal a general set of mecha-

nisms that also protect psychological functions against perturbations. We then describe a

method for quantifying robustness (Walsh, Einstein, & Gluck, 2013). Such quantification is

necessary to make precise statements about degree of robustness. We conclude by providing

simulations illustrating how each mechanism supports cognition in a different psychological

domain: psychomotor vigilance, semantic memory, and strategy selection. These simula-

tions provide concrete examples of mechanisms for robust cognition.

Robustness is already an established theme in biology and engineering. In the following

sections, we look to those fields for preliminary answers to two questions: Why is robustness

important, and what mechanisms enhance robustness? The answers to these questions cap-

ture basic aspects of robustness that are relevant throughout cognitive science.

2. Why is robustness important?

Understanding why a system operates as it does require understanding the selective

forces that determined its fitness, and thus shaped its evolution. For example, circadian

rhythms are biological processes with endogenous, entrainable oscillations of about 24 h

(Reppert & Weaver, 2002). These rhythms allow the organism to anticipate environmen-

tal change caused by the Earth’s rotation, and so to synchronize behavioral and physio-

logical processes to the appropriate time of day. The biochemical reactions underlying

the circadian clock are dependent upon the organism’s internal temperature, yet the clock

operates over a range of temperature conditions. Understanding the circadian rhythm,
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then, requires understanding how biochemical reactions produce an oscillation with a per-

iod of about 24 h, and how they do so as the temperature fluctuates (Hatakeyama &

Kaneko, 2012).

A biological system is robust if it continues to function despite perturbation (Flack,

Hammerstein, & Krakauer, 2012; Kitano, 2004). Biological perturbations can be genetic

(e.g., mutations) or environmental (e.g., temperature change). These may threaten the sur-

vival of individuals in a species, or even the species as a whole. In this sense, evolution

favors traits that confer robustness against biological perturbations.

Robustness is also an objective in structural engineering. Threats that may affect a

structure (e.g., material fatigue, extreme weather, or explosions; Bontempi, Giuliani, &

Gkoumas, 2007) are referred to collectively as its exposure. These are the “perturba-

tions,” a structural system is likely to encounter. Robust structures are resistant to

progressive disproportionate collapse following exposure to such threats.

Finally, mechanical engineers seek to create robust systems. This is the motivation

behind Design for Variation, a strategic initiative launched at Pratt and Whitney (Rein-

man et al., 2012). Central to this initiative is the idea that variation is a major stressor of

fielded systems. For example, the effectiveness of turbine airfoil cooling features depends

on several factors, including airfoil geometric dimensions, pressure, and temperature. By

identifying the input variables that contribute most to uncertainty in airfoil temperature,

engineers can focus on reducing variation in those inputs or enhancing robustness of the

design against those sources of variation.

Common across these domains is the idea that robustness is the ability of a system to

maintain its function despite perturbation. The meaning of function is context-specific.

The function of a biological system may be to survive and reproduce, whereas the func-

tion of a structural system may be to provide shelter or support. Likewise, the meaning

of perturbation is context-specific. Perturbations include genetic mutations (Wagner,

2005), the variable temperatures over which the circadian clock or a turbine airfoil must

operate (Hatakeyama & Kaneko, 2012; Reinman et al., 2012), or changes in load distri-

bution following loss of structural elements (Starossek & Haberland, 2012). Robustness is

important because it allows systems to function across the variable environments they

encounter (Gluck et al., 2012).

3. What mechanisms enhance robustness?

A shared set of mechanisms enhances robustness across domains (Table 1).2 The fit-

ness advantages conferred by these mechanisms explain why they reoccur as products of

natural and artifactual design processes.

3.1. System control: Using a measure of oneself or one’s output to adjust control

System control includes negative feedback loops, positive feedback loops, or other reg-

ulatory feedback loops that allow the system to remain in one state or to move among
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stable states. For example, bacterial chemotaxis, the process by which bacteria track

chemical gradients, is robust against variations in the strength of extracellular attractant

signals and intracellular protein concentrations (Barkai & Leibler, 1997). Bacteria use a

form of negative feedback control called integral control to adapt to these sources of

external and internal variation (Yi, Huang, Simon, & Doyle, 2000).

Control theorists distinguish between closed-loop systems, which use a measure of

their output to modify control signals, and open-loop systems, which do not (Goodwin,

Graebe, & Salgado, 2001). By monitoring the system’s output, closed-loop controllers

can compensate for external disturbances acting on the system. Closed-loop control, also

called feedback control, is commonly used to manage devices that must operate in vari-

able conditions (e.g., thermostats).

3.2. Redundancy: Having multiple components to achieve the same function

If homogenous components exist, one can replace another following failure. Such pure

redundancy, though common in engineered systems, is rare in nature. More typically, het-

erogeneous components support the same function but in different ways. This form of

redundancy is also called redundancy and diversity (Kitano, 2004), or degeneracy (Edel-

man & Gally, 2001; Friston & Price, 2003). For example, oxidative phosphorylation and

glycolysis both produce adenosine triphosphate (ATP; Berg, Tymoczko, & Stryer, 2002),

which is crucial for intracellular metabolic processes. Oxidative phosphorylation, the

primary source of ATP, requires oxygen, whereas glycolysis does not.

Redundancy is also present in engineered systems. For instance, building codes call for

alternate load paths in structural designs (Canisius, 2011; NISTIR 7396, 2007). These

load paths can redistribute forces originally carried by failed components, arresting incipi-

ent collapse. Likewise, automatic flight control systems contain multiple computers. Each

performs the same function in a different way to ensure redundancy and diversity (Pratt,

2000).

3.3. Adaptability: Switching into different modes of operation to maintain performance

Robustness does not mean that genetic and environmental perturbations do not affect

how a system behaves. Perturbations may force a system to enter a new operational mode

Table 1

Mechanisms for robustness

Mechanism Biology Engineering Cognitive Science

System

control

Feedback loops, integral

control

Closed-loop

control

Feedback control, conflict detection, recurrent

connectivity

Redundancy Parallel metabolic

pathways

Alternate load

paths

Redundant and diverse neural systems, distributed

representations

Adaptability Inducible defenses Adaptive

controllers

Strategy selection, mixture-of-experts
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to maintain functionality (Hagen & Hammerstein, 2005). For example, water fleas can

grow a helmet-like structure for protection against predators. Because the helmet is costly

to construct, fleas only grow it upon detecting traces of the predator (Agrawal, Laforsch,

& Tollrian, 1999). This inducible defense is a dramatic example of an environment-

specific, phenotypic adaptation.

Adaptability also appears in engineered systems in the form of adaptive control (Ioan-

nou & Sun, 1996). Because control solutions are highly specialized, a solution that per-

forms well in one context may perform poorly in others. For example, the dynamic

properties of the CH-47 helicopter change as a function of its horizontal and vertical

flight velocities (Sastry & Bodson, 1989). Airspeed sensors monitor these variables to

select which of 90 different controllers to activate as the CH-47 operates.

Adaptability relates to the first and second mechanisms for robust performance. To be

adaptable, a system must have multiple ways to achieve a function (i.e., redundancy).

The system must also have a sensor to monitor itself and the environment, and a control-

ler to select among redundant components (i.e., system control). The controller must

select components that are appropriate given the state of the system and environment.

This may require hardcoding knowledge into the system, or incorporating learning algo-

rithms into its design.

4. Robustness of the cognitive system

Like biological and engineered systems, the cognitive system must function within var-

iable environments. To the extent that the mechanisms we identified are general, these

same mechanisms may enhance cognitive robustness. We now review evidence that this

is, in fact, the case.

4.1. System control

One distinction in the motor control literature is between feedforward and feedback

control (Desmurget & Grafton, 2000; Jordan, 1996; Kawato, 1999). In feedforward

control, a sequence of muscle activations that produce the desired state is determined

before movement onset. Once a command signal is issued, the action is performed

without modification. In feedback control, the system’s current state is compared

against the desired state. As an action is performed, positional errors are used to gen-

erate corrective commands. To generate a corrective signal, the motor system must

estimate its current state. This is done using sensory (e.g., visual and prioceptive) and

non-sensory (e.g., efferent motor commands) information (Desmurget & Grafton, 2000;

Todorov, 2004). Feedback control enhances robustness by allowing the motor system

to make adjustments when external forces are applied to the active effector, and by

allowing the motor system to correct movements that were incorrectly specified during

planning.
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More generally, system control is the ability of a system to adjust its dynamics while

monitoring itself, and not just its output. Neuroimaging and electrophysiology studies

have reported anterior cingulate cortex (ACC) activation in tasks that involve (a) overrid-

ing prepotent responses; (b) selecting among equally correct responses; or (c) error com-

mission. In all of these tasks, multiple incompatible responses are simultaneously active.

Based on this observation, Botvinick, Braver, Barch, Carter, and Cohen (2001) proposed

that the ACC monitors for response conflict. Upon detecting conflict, the ACC engages

areas such as the dorsolateral prefrontal cortex, which then increase attentional control.

This strengthens stimulus inputs and reduces response conflict. By this view, the ACC

contributes to cognitive robustness by monitoring for response conflict and signaling for

greater control as needed.

Finally, system control in the form of positive feedback loops enhances cognitive

robustness by amplifying internal representations of degraded stimulus inputs. The hippo-

campus, and the medial temporal lobe more generally, support episodic knowledge

(Squire, 1987). When cues that comprise a memory are encountered, the hippocampus

activates the corresponding, internally stored episode. Importantly, people can retrieve

episodic memories given incomplete and degraded inputs. To account for this ability,

Marr (1971) developed an autoassociative model of the hippocampus. Autoassociative

networks are trained to map input patterns to identical output patterns (Kohonen, 1984).

The output is sent back to the network as an input signal through recurrent connections.

When the network is presented with an incomplete pattern, activation from the recurrent

collaterals iterates through the network and gradually completes the missing parts of the

pattern (i.e., pattern completion).

The recurrent connectivity of Marr’s autoassociative network, and of other hippocam-

pal models it inspired (Gluck & Myers, 1997), forms a positive feedback loop. The acti-

vation pattern corresponding to a stored episode constitutes a stable state. Recurrent

connections allow the network to move among states based on the input. Consequently,

the output of the network is robust against variation in the completeness and quality of

inputs. Recurrent networks have also been used to model working memory that is robust

against temporal delay (O’Reilly & Frank, 2006), and object recognition that is robust

against visual occlusion and image degradation (Wyatte et al., 2012).

4.2. Redundancy

A remarkable feature of the human brain is its ability to maintain and recover cogni-

tive functions following focal cortical damage. This challenges the notion of a one-to-one

mapping between structure and function, and it suggests that each function can be accom-

plished by many structures (Just & Varma, 2007; Lashley, 1950; Price & Friston, 2002).

These structures are not mere replicates. Different structures perform the same function

in different ways (Edelman & Gally, 2001; Friston & Price, 2003). The existence of sepa-

rate information-processing mechanisms that yield consistent outputs is recognized in

cognitive neuroscience. For example, regular words can be read using phonological or

semantic processes (Seidenberg & McClelland, 1989). Regular word reading, therefore, is
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left relatively intact following circumscribed damage to neural structures associated with

one of the pathways.

Functional-magnetic resonance imaging experiments and patient studies are informative

with respect to this issue (Noppeney et al., 2004; Price & Friston, 2002). Functional

imaging experiments can identify the set of regions sufficient for performing a task,

whereas patient studies can determine which of those regions are necessary. For example,

when asked to match words on the basis of their meaning, neurotypical participants acti-

vate a distributed semantic-retrieval network (Mummery et al., 1999). However, focal

lesions encompassing each of the regions that comprise the network do not dramatically

alter performance. Thus, although the set of regions sufficient for performing the task is

large, few are necessary (Price & Friston, 2002).

As another example, multiple neural systems regulate instrumental responding. The

emerging view from behavioral and physiological studies is that two forms of control,

goal-directed and habitual, coexist as complementary mechanisms for action selection

(Balleine & O’Doherty, 2010; Daw, Niv, & Dayan, 2005). Goal-directed control is

dominant early in training, and habitual control after extended training. If neural struc-

tures responsible for goal-directed control are lesioned early in training, however, habit-

ual control is expressed immediately (Yin, Ostlund, Knowlton, & Balleine, 2005).

Alternatively, if neural structures responsible for habitual control are lesioned after

extended training, goal-directed control is re-expressed (Yin, Knowlton, & Balleine,

2004). The distinction between goal-directed and habitual control is surprisingly gen-

eral; similar definitions arise in artificial intelligence and in cognitive modeling (Walsh

& Anderson, 2014). In all cases, the existence of multiple controllers confers robustness

against damage to one.

Lastly, robust internal representations depend on redundancy. The graceful degradation

that follows focal cortical damage is an emergent property of some connectionist models

of cognitive phenomena (Hinton & Sejnowski, 1986). Processing in connectionist models

occurs through the propagation of activation values through networks of units. Knowledge

is stored as the set of connection weights among units, and each concept (e.g., “bird”) is

represented by a pattern of activation distributed across many units. Distributed represen-

tations arise from the combined effect of many units, no one of which is critical to the

realization of the representation. Consequently, when units are removed or noise is added

to connection weights, representations, though degraded, remain.

4.3 Adaptability

Psychological research has inspired the view that the mind contains a toolbox of deci-

sion strategies, or heuristics (Gigerenzer & Gaissmaier, 2011). When faced with choices,

people can, and do, use a variety of heuristics. Such variability enhances robustness if the

individual can choose adaptively among strategies. Many models of human problem solv-

ing include a strategy selection process (Payne, Bettman, & Johnson, 1988; Rieskamp &

Otto, 2006; Siegler, Adolph, & Lemaire, 1996; Walsh & Anderson, 2009). Upon viewing

a problem, the individual evaluates the applicability of different strategies. This evalua-
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tion is informed by the history of strategy use: What has worked in the past will likely

work again. This evaluation is also informed by the current context: Different strategies

are applicable to problems with different features. Based on past experiences and the cur-

rent context, the individual attempts to identify the strategy that will maximize perfor-

mance. By selecting strategies that are tuned to the environment, and are thus

ecologically rational (Marewski & Schooler, 2011), the individual can perform well even

as features of the problem or decision scenario change.

Adaptability also extends to the motor system, which may switch among multiple pairs

of forward and inverse models to control behavior (Wolpert & Kawato, 1998). The idea that

we use internal models to plan actions is an important concept in motor control (Brown &

Rosenbaum, 2002; Jordan, 1996; Kawato, 1999; Wolpert, 1997). Forward models predict

the sensory consequences of motor commands, and inverse models identify motor com-

mands that will produce the desired output. Both types of models mimic the input/output

characteristics of the motor apparatus. But the range of objects and environments that the

sensorimotor system interacts with is too great to allow one internal model to generalize to

all possible scenarios (Kawato, 1999; Wolpert, 1997). For example, the kinematic and

dynamic properties of a brush differ from those of a racquet. Consequently, the same inter-

nal model cannot be used to plan brush and racquet strokes.

The mixture-of-experts architecture provides a solution to this problem (Jacobs, Jordan,

Nowlan, & Hinton, 1991). The mixture-of-experts architecture consists of a set of expert

modules, each of which is specialized for a different subtask. A gating module combines

the outputs of all expert modules. In the multiple paired forward-inverse model (Wolpert

& Kawato, 1998), an instance of this type of architecture, expert modules contain corre-

sponding forward and inverse models. A gating module transfers control among experts

based on how well their forward models predict incoming sensorimotor signals, and based

on contextual information from sensory inputs. By transferring control among expert

modules, the multiple paired forward–inverse model maintains performance even as kine-

matic and dynamic properties of the motor apparatus change.

5. Quantification of robustness

Having identified a collection of mechanisms that enhance robustness—system control,

redundancy, and adaptability—and having established their relevance to cognitive science,

we turn our attention to a formal quantification of robustness. We conceptualize robust-

ness as the extent to which a system is able to maintain its function when some aspect of
the system is subject to perturbation (Gluck et al., 2012). This serves to clarify our

definition of robustness, but it does not itself advance a methodology for measuring

degree of robustness and selecting based on that property. To that end, we now summa-

rize a methodological operationalization of robustness (Walsh et al., 2013).

To quantify robustness, one must specify the system’s function. Functionality may be

defined by a single performance goal (e.g., to respond accurately), or by multiple perfor-

mance goals (e.g., to respond accurately and quickly). One must also specify the
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perturbations the system may encounter. We treat the environment as a multidimensional

space, E. Dimensions can be internal to the individual (e.g., degree of fatigue) or external

to the individual (e.g., extent of object occlusion). Each scenario the individual faces, x,
constitutes a point in space defined by values along the dimensions that comprise the

environment (x 2 E). Perturbations involve altering values along the dimensions to move

the individual from one scenario to another.

After defining a system’s function and identifying perturbations the system may

encounter, one can quantify robustness. At a high level, this involves interpreting perfor-

mance metrics (i.e., reaction times and response accuracy) based on contextual factors

(i.e., scenarios and tolerance). Our approach entails three steps: calculate functionality,

assess robustness, and measure stability.

5.1. Step 1: Calculate functionality

First, we ask, did the system achieve its function in an isolated scenario? Functionality

in scenario x is defined as

FunctionalityðxÞ ¼ SðxÞ ¼ FðxÞ
T

� �
ð1Þ

Success [S(x)] is the proportion of time the system achieved its function, and failure

[F(x)] is the proportion of time the system did not [S(x) + F(x) = 1]. Tolerance (T > 0.0)

depends on the significance of failure. If errors are consequential, tolerance must be low.

If errors are inconsequential, tolerance may be higher. Functionality is bound by 1.0 for

when S(x) = 1.0, and by �1/T for when F(x) = 1.0.

Tolerance relates to risk-based criteria (i.e., maintain below 3.4 failures per million

opportunities; 0.0 < risk < 1.0). The interpretation of functionality is straightforward

when tolerance is set to the ratio of acceptable risk to one minus acceptable risk,

T = risk/(1�risk). When tolerance is set in this way, negative functionality denotes

that the system violates acceptable risk, and positive functionality denotes that the sys-

tem remains within acceptable risk. In applied settings, acceptable risk and tolerance

can be derived from established or expressed performance standards (Walsh et al.,

2013). Tolerance can also be determined with a risk matrix or an economic analysis

of total costs, tools that have been used to identify target levels of reliability in engi-

neering and medical decision making (Huaco, Bowders, & Loehr, 2012; Weinstein &

Fineberg, 1980).

Responses cannot always be classified simply as correct or incorrect. When multiple

types of correct responses and errors are possible, different tolerances may be assigned to

each response category,

FunctionalityðxÞ ¼ ½S1ðxÞ þ S2ðxÞ. . .þ SmðxÞ� � F1ðxÞ
T1
þ F2ðxÞ

T2
þ . . .

FnðxÞ
Tn

� �� �
ð2Þ
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S1. . .m are the proportions of successful responses in each of m categories, and F1. . .n are

the proportions of unsuccessful responses in each of n categories. T1. . .n are the specific

tolerances for each type of failure.

To facilitate interpretation, functionality scores are normalized according to the strict-

est tolerance,

FunctionalitynormðxÞ ¼
minðT1...nÞ � FunctionalityðxÞ þ 1

minðT1. . .nÞ þ 1
ð3Þ

In Eq. (3), min(T1. . .n) is the minimum tolerance from the n types of possible failure.

Following normalization, all functionality scores fall between zero (minimally functional)

and one (maximally functional). Prior to normalization, positive functionality denotes that

the system remains within allowable risk. Following normalization, functionality greater

than 1/(min(T1. . .n)+1) denotes that the system remains within allowable risk.

5.2. Step 2: Assess robustness

Next, we ask, to what extent did the system achieve its function across all scenarios

formed by combinations of the environment dimensions? Robustness is defined as

Robustness ¼
Z

FunctionalitynormðxÞ � ProbabilityðxÞdx ð4Þ

Probability(x) describes the probability of encountering that scenario. In the absence of

prior information, all scenarios are treated as equally likely. Because normalized function-

ality is bounded by zero and one, and because the probability distribution of scenarios

sums to one, robustness is bound by zero (minimally robust) and one (maximally robust).

5.3. Step 3: Measure stability

Lastly, we ask, how much did functionality vary across scenarios? Stability is defined as

Stability ¼ 1� 2 � rFunctionalitynorm ð5Þ

The range of the standard deviation among normalized functionality scores is 0.0–0.5.
We multiply the standard deviation by two to place stability over the range 0.0–1.0, and
we treat stability as a decreasing function of the standard deviation because stability is

inversely related to the degree of variability among functionality scores. Stability is

bound by zero (minimally stable) and one (maximally stable).

Robustness and stability are orthogonal measures. Robustness answers the question,

“Does the system perform well on average?” Stability answers the slightly different ques-

tion, “Is the performance of the system insensitive to perturbation?” Both are desirable

properties of a system.
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5.4. Implementation

Having described a method for quantifying robustness, we now use it to demonstrate

how each mechanism contributes to robust cognition in a different psychological domain:

psychomotor vigilance, semantic memory, and strategy selection. In each example, we

use simulations to estimate functionality in the scenarios created by applying perturba-

tions. For instance, the first simulation, psychomotor vigilance, involves a single perturba-

tion: time awake. We measure the functionality of two models of psychomotor vigilance

in 45 scenarios created by varying time awake from 0 to 88 h in 2-h increments. The

models predict response time distributions for each scenario. These distributions serve as

the basis for calculating the proportions of trials resulting in success (S in Eq. 2) and fail-

ure (F in Eq. 2), which are used to measure functionality.

Robustness and stability describe functionality over all scenarios comprising the envi-

ronment. Rather than calculating these values analytically (Eqs. 4 and 5), we estimate

them using numerical simulations over the subset of enumerated scenarios. To quantify

robustness and stability, we generate samples. Each sample contains a functionality score

from all of the 45 scenarios. The mean of functionality within a sample is used to esti-

mate robustness, and the standard deviation of functionality within a sample is used to

estimate stability. Because simulations are stochastic, functionality in a scenario varies

for each model run. By estimating robustness and stability repeatedly using a large num-

ber of samples, we can quantify uncertainty in these estimates.

6. Simulation studies

In each of the following simulation studies, we calculate the robustness and stability of

two or more cognitive systems. Comparative analysis of multiple systems is a straightfor-

ward application of the quantification described in the previous section. Functionality,

and therefore robustness, depends on tolerances assigned to the different types of failure.

Because tolerance is set by context, differences among the robustness of cognitive sys-

tems within the same context are meaningful. The robustness value of a single system is

also meaningful. Normalized functionality greater than 1/(min(T1. . .n)+1) indicates that

cognition is functioning within allowable risk levels. This value provides a criterion

against which to determine whether a single system violates allowable risk, how close the

system comes to violating allowable risk, or how often the system violates allowable risk.

7. Simulation 1. System control in psychomotor vigilance

Vigilance is the ability to maintain focused attention for extended periods of time

(Davies & Parasuraman, 1982). The systematic study of vigilance was first motivated by

the question of why radar operators sometimes missed weak signals indicating the pres-

ence of enemy submarines (Mackworth, 1948). Vigilance remains an important topic.
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Advances in automated technology have shifted the role of human operators from active

controllers to supervisors who must react when problems arise (Warm, Parasuraman, &

Matthews, 2008). Consequently, much research has gone toward understanding vigilance

and factors that affect it.

One of these factors is fatigue. An extensive literature documents the deleterious

effects of fatigue on psychological functioning (for a review, see Durmer & Dinges,

2005). As part of the effort to understand these effects, researchers have developed bio-

mathematical models of fatigue. Nearly all are based on the canonical two-process theory

(Borb�ely & Achermann, 1999): Circadian processes produce variations in alertness over

the course of a single day, whereas sleep homeostatic processes produce continuously

declining alertness with time awake.

Importantly, these models and the experiments that motivate them do not show that

sleep loss simply suppresses neurobehavioral functions. Rather, sleep loss destabilizes

performance (Doran, van Dongen, & Dinges, 2001). The circadian component of fatigue

has been linked with the suprachiasmatic nucleus, and the sleep homeostatic component

with the accumulation of adenosine—a byproduct of ATP—and sleep regulatory sub-

stances. Consolidation of circadian and homeostatic processes occurs in subcortical sleep

regulatory circuits, which send ascending projections to the thalamus and cerebral cortex

(for a review, see Saper, Scammell, & Lu, 2005). The behavioral variability people dis-

play when fatigued is thought to arise from the interaction between the drive for sleep,

and compensatory behavioral and neurophysiological responses to remain alert (Drum-

mond, Brown, Salamat, & Gillin, 2004). In other words, the brain monitors for and

increases effort upon detecting the onset of fatigue. This system control mechanism
enhances the robustness of the cognitive system against fatigue.

7.1. The psychomotor vigilance task (PVT)

The PVT is a sustained attention task used to measure alertness (Dinges & Powell,

1985). Participants monitor a display for the presentation of a stimulus. When the stimu-

lus appears, they respond. False starts are trials in which a response is made before or

within 150 ms of stimulus presentation, and sleep attacks are trials in which no response

is made within 30s of the stimulus. In an experiment by Doran, van Dongen, and Dinges

(2001), participants remained awake for 88 h and completed the PVT every 2 h. With

increasing time awake, the number of false starts increased, the number of sleep attacks

increased, and alert responses slowed. These outcomes of the PVT are highly replicable

and predictable (Lim & Dinges, 2008). But despite these performance decrements,

participants retain remarkable ability to perform the PVT even after extended periods of

wakefulness.

7.2. Task model

Gunzelmann, Gross, Gluck, and Dinges (2009) modeled the effects of sleep deprivation

in the PVT using Adaptive Control of Thought–Rational (ACT-R; Anderson, 2007). ACT-R
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is a production system with a set of specialized information-processing modules. Buffers

connect these modules with a central procedural module. Procedural knowledge is repre-

sented in the form of production rules. Each rule has a set of conditions that must be met for

it to be selected, and a set of actions that modify the external state of the world and the inter-

nal state of the architecture. The temporal dynamics of cognition unfold across a series of

production cycles. In each cycle, conditions for different productions are compared against

the contents of the buffers, and the production with greatest utility is selected and enacted.

The resulting state of the world and of the architecture serves as the starting point for the

next production cycle.

Gunzelmann et al. (2009) included four productions in their model of the PVT: wait
for the stimulus to appear, attend to the stimulus once it appears, respond after attending

to the stimulus, and respond randomly. The fourth production, though rarely chosen

because of its low utility, caused false starts. Subsequent to that model, ACT-R under-

went several major changes, including the addition of production partial matching. With

production partial matching, productions whose conditions are not perfectly met remain

eligible for selection, but their utility values are penalized. Because of production partial

matching, respond can be selected at any time. This obviates the need for the respond
randomly production: When respond is selected before the stimulus appears, a false start

occurs. But because respond is subject to the mismatch penalty when its conditions are

not perfectly met, this happens infrequently.

In a revised ACT-R model of the PVT (Walsh, Gunzelmann, & Van Dongen, 2014),

instantaneous utility is calculated as

U0i ¼ FP � ðUi �MMPiÞ þ ei ð6Þ

Ui is the stored utility of production i, MMPi is the mismatch penalty, and ei is logisti-
cally distributed noise. The alertness value FP is derived from a biomathematical model

of fatigue (McCauley et al., 2013). FP varies with the circadian rhythm and decreases

with time awake. Consequently, as fatigue increases, the utilities of all productions

approach zero.

In each production cycle, the rule with highest utility is enacted if its utility exceeds a

threshold,
Choice ¼ maxðU0iÞ; if maxðU0iÞ[ FT � Threshold ð7Þ

If no production’s utility exceeds the threshold, a micro-lapse occurs: The model

becomes briefly inactive before searching again for a rule with sufficiently high utility to

enact. Because production utilities decrease with fatigue, it becomes unlikely that the

value of any production will exceed the threshold.

To offset this effect, Walsh et al. (2014) dynamically adjusted the threshold in

accord with the moderating variable, FT.3 As with the production utility moderating

variable FP, the threshold moderating variable FT is derived from a biomathematical

model of fatigue (McCauley et al., 2013). Both decrease with time awake, but FT

does so more gradually. This is a computational instantiation of the neurophysiological
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system control mechanism described earlier. Decreasing the utility threshold with time

awake increases the probability that a production will remain eligible for selection.

Thus, behavior of the integrated model depends on the interaction between a primary

response—the decreased production utilities caused by the onset of fatigue, and a

compensatory response—the decreased utility threshold following the detection of

fatigue.

7.3. Simulation 1A: PVT

We tested versions of the PVT model with and without compensatory adjustment of

the utility threshold (FT in Eq. 7). This comparative manipulation of the presence or

absence of a system control mechanism enables precise assessment of the relative degree

of cognitive system robustness. The simulation involved a single perturbation, time

awake. For each model, we simulated 100 participants at times ranging from 0 to 88 h in

2-h increments (based on the experiment by Doran, van Dongen, & Dinges, 2001). For

this, the preliminary simulation, we only present data on the models’ response time distri-

butions. These distributions serve as the basis for computing robustness and stability in

the next simulation.

Fig. 1 shows the cumulative reaction time distributions averaged over the baseline per-

iod and over each subsequent day of the experiment. In the compensatory model, the pro-

portion of trials without responses (i.e., sleep attacks) increased from .001 � 0.002 SD at

baseline to 0.023 � 0.002 SD on Day 3. The size of the performance decrement in the

non-compensatory model was nearly 10 times greater; the proportion of trials without

responses increased from 0.001 � 0.002 SD at baseline to 0.236 � 0.007 SD on Day 3.

In addition, alert responses in the compensatory model slowed from 0.50 s � 0.03 SD at

baseline to 1.56 s � 0.07 SD on Day 3. Alert responses in the non-compensatory model

slowed far more from 0.50 s � 0.03 SD at baseline to 4.25 s � 0.15 SD on Day 3.

Finally, the compensatory model, like experiment participants, committed fewer false

starts at baseline (0.069 � 0.005 SD) than on Day 3 (0.143 � 0.006 SD). The non-com-

pensatory model actually showed a slight decrease in the proportion of trials with false

starts (Baseline = 0.068 � 0.005 SD; Day 3 = 0.061 � 0.004 SD).

7.4. Simulation 1B: Driver model

The compensatory PVT model appeared more robust against fatigue. To confirm this

analytically, we studied the two models in situ. Cognitive processes measured by the

PVT underlie complex skills (Lim & Dinges, 2008). For instance, while driving, one

must monitor traffic and decelerate upon detecting brake lights. We modified the PVT

model to predict performance in a simplified driving scenario. To do so, we set the

durations of motor planning (200 ms) and execution (500 ms) to values previously

established for a braking motion (Salvucci, 2006). We adopted a driving scenario

described in collision avoidance studies (Gray, 2011; Scott & Gray, 2008). In brief, the

scenario involves trailing a lead car by 2 s while traveling at 24.5 m/s (55 mph). Given
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the deceleration of the lead car (�6 m/s), and the maximum deceleration of one’s own

car (�8.75 m/s), one must respond within 2.66 s of the lead car’s braking to avoid

collision.

We simulated the driving performance of 100 participants at times ranging from 0 to

88 h awake in 2-h increments. The resulting reaction time distributions resembled those

in Fig. 1 but were shifted to the right due to the longer durations of the motor planning

and execution times for the braking motion. From these distributions, we computed the

proportions of trials with responses before 150 ms of the signal (false starts; F1 in

Eq. 2), within 2.66 s of the signal (alert responses; S in Eq. 2), and after 2.66 s of the

signal (collisions; F2 in Eq. 2). We assigned different tolerances to false starts

(T1 = 0.50) and collisions (T2 = 0.025) because the consequences of collision exceed the

consequences of premature braking. After normalizing functionality scores (Eq. 3), we

computed robustness (Eq. 4) and stability (Eq. 5) over the range of the fatigue perturba-

tion, using samples from the 100 simulations.

In both models, functionality varied over a 24-h period reflecting the contribution of

the circadian component to FP, and functionality decreased over 88 h reflecting the con-

tribution of the sleep homeostatic process to FP (Fig. 2). The data contain three other

important effects. First, the models had nearly identical functionality at baseline (Table 2;

t(198) = 1.81, p > .05, d = .25). Second, functionality of the non-compensatory model

dropped sharply with time awake, whereas functionality of the compensatory model

decreased gradually. This resulted in a greater value of robustness for the compensatory

model (0.940 � 0.002 SD vs. 0.802 � 0.003 SD). Third, functionality of the non-com-

pensatory model oscillated sharply within each day, whereas functionality of the

compensatory model oscillated only slightly. This, paired with the smaller change in

Fig. 1. Psychomotor vigilance task simulations. Cumulative distribution of reaction times averaged over

Baseline (hours 0–16), Day 1 (hours 17–40), Day 2 (hours 41–64), and Day 3 (hours 65–88). Time bins are

from 150 ms to 30 s in 1 ms increments. “FS” denotes trials with false starts (<150 ms), and “SA” denotes

trials with sleep attacks (>30 s).
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functionality over 88 h, resulted in a greater value of stability for the compensatory

model (0.932 � 0.004 SD vs. 0.690 � 0.007 SD). Though the analysis only extends to

88 h awake, these effects hold over any interval beyond baseline.

Based on the minimum tolerance for collisions (T2 = 0.025), the models perform

within allowable risk when normalized functionality exceeds 0.9756. Neither model

remained within allowable risk over 88 h of sleep deprivation (Table 2), and nor should

they. Although the compensatory model is more robust than the non-compensatory model,

it is not sufficiently robust to ensure safe driving after 88 h awake. A further step could

be to use the robustness analysis to determine thresholds for factors such as maximum

time awake, vehicle speed, and trailing distance to maintain allowable risk. We save such

analyses for future applications of this methodology.

7.5. Discussion

ACT-R entails theoretical commitments linking architectural components with specific

brain regions (Borst & Anderson, 2013). Most relevant here is the idea that production

Table 2

Mean functionality of compensatory and non-compensatory driving models over four test periods, with stan-

dard deviations in parentheses

Model Baseline Day 1 Day 2 Day 3

Compensatory 0.978 (.002) 0.960 (.003) 0.934 (.004) 0.896 (.005)

Non-Compensatory 0.978 (.002) 0.909 (.005) 0.779 (.006) 0.586 (.008)

Fig. 2. Driver model simulations. Functionality of compensatory and non-compensatory models as time

awake increases from 0 to 88 h in 2-h increments. Shaded regions show �1 standard deviation (SD).
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rules are instantiated in the basal ganglia (Anderson, 2007). The main input structure of

the basal ganglia, the striatum, sends predominantly inhibitory projections to the palli-

dum, which in turn inhibits cells in the thalamus. This creates a “winner-lose-all” situa-

tion in which active striatal neurons inhibit action representations in the pallidum, which

in turn release the corresponding representations from inhibition in the thalamus. The

winning action is passed to motor cortex only when striatal activation exceeds thalamic

inhibition.

The utility threshold and the compensatory response to fatigue have been associated with

the thalamus (Gunzelmann et al., 2009). In support of this view, task-related thalamic acti-

vation during alert performance increases with sleep deprivation (Chee & Choo, 2004; Ha-

beck et al., 2004; Portas et al., 1998). In addition, behavioral lapses are accompanied by

decreased activity in the thalamus (Chee et al., 2008; Paus et al., 1997). Thus, both the com-

putational architecture and the neural data point to a compensatory system control mecha-

nism in the thalamus for robust cognition even when fatigued.

The behavioral data also point to a compensatory system control mechanism for

guarding performance against fatigue. PVT studies consistently show that with increas-

ing time awake, alert responses slow and sleep attacks occur more frequently (Lim &

Dinges, 2008). Both models produce these effects, but the non-compensatory model

does so to a far greater extent than experiment participants do. In other words, people

display a degree of robustness akin to the compensatory model.4 Furthermore, PVT

studies show that with increasing time awake, participants commit more false starts.

This was the original reason for including compensatory adjustment of the utility thresh-

old in the ACT-R model—decreasing the utility threshold offsets the effect of the mis-

match penalty on the respond production, causing more false starts (Fig. 1). But as

these simulations show, decreasing the utility threshold is vital to compensate for the

effect of fatigue on utility values to limit the number of lapses. This interplay between

a primary and compensatory response to fatigue is not unique to the ACT-R model. The

effects of fatigue on psychomotor vigilance have been captured in a similar way in a

diffusion model of the PVT (Walsh et al., 2014).

8. Simulation 2: Redundancy in semantic memory representations

How do we know what attributes an item has? Once acquired, how is this knowl-

edge protected against the inevitable loss of neocortical neurons that occurs over the

lifespan (Pakkenberg & Gundersen, 1997)? The connectionist framework provides a

way to deal with these issues (Rogers & McClelland, 2004). In connectionist models,

cognitive processes arise from interactions among simple, neuron-like units. Knowledge

is stored in the strength of connections among units and is acquired gradually from

experience.

Early models treated semantic knowledge, knowledge about items and their attributes,

as a set of concepts (e.g., robin) and propositions (e.g., can fly). To determine whether a

proposition was true of a concept, one accessed the concept to see whether the proposi-
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tion was stored there (Collins & Quillian, 1969). In some connectionist models of seman-

tic knowledge, concepts and propositions are not stored as such. Rather, concepts are rep-

resented by distributed patterns of activation across several units (Rogers & McClelland,

2004). The type of representation used in these models, called a distributed representa-

tion, is inherently redundant. Concepts are not represented by the activation of one unit,

but by the activation of several units at once. This form of redundancy enhances the

robustness of high-level representations against the loss of low-level units.

8.1. Task model

Fig. 3 shows a semantic network built by Rogers and McClelland (2004; cf. Rumel-

hart & Todd, 1993). The network has a feedforward structure; activation flows in one

direction from item (e.g., robin) and relation units (e.g., can), through hidden layers,

and to an output layer that contains units for completing propositions (e.g., grow,
move, and fly). Connection weights among units are initially set to small random val-

ues so that inputs produce weak, undifferentiated outputs. The network is presented

with examples during training. For instance, the inputs robin and can are set to one.

Activation passes through the hidden layers and to output units. Activation of each

output unit is compared against its target value (grow, move, and fly should equal one,

and all other outputs should equal zero). The resulting error is used to adjust the

strength of connections among units to reduce differences between actual and target

outputs.

The model utilizes localist input representations; each item is signified by activation

of one unit in the item layer. All units in the item layer connect with all units in the

representation layer. This allows the network to re-encode localist inputs in a distrib-

uted fashion. During training, the distributed patterns of activation across representa-

tion units come to resemble a virtual semantic hierarchy. The more similar two items

are, the more similar the patterns of activation they produce. Over the course of train-

ing, distributed representations distinguish first between superordinate categories (i.e.,

plants/animals), next among intermediate categories (i.e., trees/plants and birds/fish),
and last among individual items (i.e., oak/pine, rose/daisy, robin/canary, and salmon/
sunfish).

We examined the effects of three forms of redundancy on the robustness of the seman-

tic network against simulated neural damage. The first form, representational redundancy,

is the degree to which an attribute is shared by related concepts. For example, the

attribute can move is shared by all concepts in the superordinate category of animals,

whereas the attribute can fly is shared only by concepts in the intermediate category of

birds. Thus, the attribute can fly is less redundant because it is shared by fewer related

concepts. The attribute can sing is even less redundant because it is true only of an indi-

vidual item, canary.
The second form of redundancy is architectural. The choice of how many units to

include in the representation layer of the semantic network is subjective. Although earlier

versions of this model include eight, Rumelhart and Todd (1993) found that a network
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with fewer representation units performed equally well. This raises the question of

whether there is an advantage to having more than the smallest number of representation

units necessary to achieve mastery.

Fig. 3. Feedforward semantic network. Input to the network consists of an item-relation pair: activation of a

unit in the Item layer is set to one, and activation of a unit in the Relation layer is set to one. Inputs to the

network pass through the Representation and Hidden Units layers before activating output units. The network

is trained to activate all units in the Attribute layer that satisfy the item-relation pair. Solid arrows indicate

that all units in the sending layer (to the left) connect to all units in the receiving layer (to the right). Figure

adapted from Rogers and McClelland (2004).
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The third form of redundancy is also architectural. In earlier versions of this model, all

item units project to all representation units. Consequently, inputs activate distributed rep-

resentations. Alternatively, each item unit could project to one unique representation unit.

In this case, localist representations would be maintained across the representation layer.

We varied connectivity between the item and representation layers to test whether the

architectural redundancy afforded by distributed representations did, in fact, enhance the

robustness of the network against simulated damage.

8.2. Simulation and results

We implemented semantic networks based on Rogers and McClelland (2004). In ver-

sions with distributed representations, all item units connected with all representation

units. Connection weights were initialized to random values between �0.9 and 0.9, and

were allowed to change during training. The network contained six, eight, or ten units in

the representation layer. In the version with localist representations, each item unit con-

nected with one unique representation unit. Connection weights were fixed at 1.0. The

network contained eight units in the representation layer. All networks were trained

through 5,000 epochs. In each epoch, the network was presented with 32 examples

formed by crossing the eight items and four relations. The learning rate was set to 0.1.

Results are based on 100 simulations of each network.

The simulation involved a single perturbation: number of damaged units in the rep-

resentation layer. After training, we simulated neural damage by setting representation

units’ incoming activation from the item layer to zero. We varied the number of dam-

aged units in the representation layer from zero to six, and tested the ability of the

networks to activate positive attributes of each concept. Some attributes apply to all

concepts in the network (e.g., is living), others to superordinate categories (e.g., can
move), others to intermediate categories (e.g., has wings), and still others to individual

concepts (e.g., can sing). Responses were counted as correct if activation of the target

output unit exceeded 0.5. Test accuracy provided the values of S and F for the

robustness quantification (Eq. 2). To simplify matters, we set tolerance for incorrect

responses to 1.0 (T in Eq. 2).

During training, versions of the network with distributed representations correctly

learned general attributes first, followed by superordinate attributes, intermediate

attributes, and finally individual attributes. The time-course of acquisition of the different

attributes in the network with eight hidden units was virtually identical to Rogers and

McClelland (2004). Following training, all versions of the network correctly activated all

attributes. In other words, in the absence of perturbation, representational and architec-

tural redundancy had no effect on eventual functionality.

Having validated the re-implemented model, we applied the perturbation. As the

number of damaged representation units increased (Fig. 4), the functionality of all net-

works and for each type of attribute (excluding universal attributes) dropped. Because

representation units convey item inputs to subsequent network layers, functionality

should logically fall with the number of damaged units. The rate of change in function-
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ality was modulated by the degrees of representational and architectural redundancy in

the network. The network with the most representation units maintained highest func-

tionality across the range of perturbation. Of the networks that contained eight represen-

tation units, the network with distributed representations maintained greater functionality

than did the network with localist representations.

We tested whether representational redundancy enhanced the robustness of the seman-

tic network against damage. As seen in Fig. 4, universal attributes were most robust

against damage, followed by superordinate attributes, intermediate attributes, and individ-

ual attributes (Table 3). Likewise, universal attributes were most stable, and individual

attributes were least stable (Table 3).

These results arise in part from the amount of activation spreading from relation units

to attributes. The network acquires large positive weights from relation units to universal

attributes via the hidden layer. Activation of a relation unit (e.g., isa) is sufficient to acti-

vate the universal attribute (e.g., living thing). The network acquires moderate positive

weights from relation units to superordinate attributes via the hidden layer. Activation of

a relation unit (e.g., isa) moderately activates superordinate attributes (e.g., plant and

animal), but activation of an item unit is necessary to disambiguate the correct response.

Lastly, the network acquires small positive weights from relation units to intermediate

and individual attributes via the hidden layer. Activation of a relation unit only weakly

activates intermediate and individual attributes, and activation of an item unit is necessary

to drive the response.

In networks with distributed representations, these results also arise from the similar-

ity structure among items across the representation layer (Rogers & McClelland, 2004).

An individual item (e.g., canary) occupies a narrow region of the representation space,

its intermediate category (e.g., bird) occupies a broader region, and its superordinate cat-

egory (e.g., animal) occupies the broadest region. Consequently, when an item’s repre-

sentation is degraded, the representation is still likely to correctly activate superordinate

attributes, it is less likely to activate intermediate attributes, and it is least likely to acti-

vate individual attributes.

Next, we tested whether the number of representation units in networks with

distributed representations affected robustness. A 4 (attribute) 9 3 (number of

representation units) repeated measures ANOVA revealed main effects of attribute,

F(3, 891) = 7,279, p < .0001, g2 = 0.96, and of number of representation units,

F(2, 297) = 1,134, p < .0001, g2 = 0.88. Networks with more representation units

were most robust against damage. Representational redundancy interacted with

this form of architectural redundancy, F(6, 891) = 413, p < .0001, g2 = 0.74.

More fragile sources of knowledge (i.e., superordinate, intermediate, and individ-

ual attributes) were especially vulnerable to damage in networks with few repre-

sentation units. Findings pertaining to stability mirrored the results of the

robustness analysis (Table 3).

These results held when controlling for the proportion of damaged units. Consider-

ing only the case where half of the representation units were damaged (3/6 in the net-

work with six representation units, 4/8 in the network with eight representation units,

M. M. Walsh, K. A. Gluck / Cognitive Science (2014) 21



and 5/10 in the network with 10 representation units), a 4 (attribute) 9 3 (number of

representation units) ANOVA revealed a main effect of number of representation units,

F(2, 297) = 18, p < .0001, g2 = .11. Across superordinate, intermediate, and individual

Fig. 4. Semantic memory simulations. Functional of the semantic network as number of lesioned representa-

tion units increases from 0 to 6. Panels show attributes that apply to categories at different levels of general-

ity: universal (living thing), superordinate (plants or animals), intermediate (tree, flower, bird, or fish), and

individual (pine, oak, rose, daisy, robin, canary, sunfish, or salmon). Lines within each panel correspond to

networks with between 6 and 10 representation units, and network with localist representation of items.
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attributes, the network with 10 representation units performed about 10% better than

did the network with six representation units. The size of the effect increased to 20%

when we compared networks with 12 and four representation units.

Lastly, we tested whether the type of representation, distributed or localist, affected

the robustness of networks with eight units in the representation layer. A 4 (attribute) 9 2

(representation) repeated measures ANOVA revealed main effects of attribute,

F(3, 594) = 4984, p < .0001, g2 = 0.96, and representation, F(1, 198) = 650, p < .0001,

g2 = 0.77. The network with distributed representations was more robust against damage.

Architectural redundancy interacted with this form of representational redundancy, F(3,
594) = 436, p < .0001, g2 = 0.69. Superordinate knowledge was very robust against dam-

age in both networks, and individual knowledge was not especially robust in either network.

But superordinate and intermediate sources of knowledge were far more robust in the net-

work with distributed representations. Findings pertaining to stability mirrored the results of

the robustness analysis (Table 3).

Performance of the network with localist representations depends on two factors.

First is the amount of activation spreading from relation units to attributes. As in the

networks with distributed representations, relation units acquire strong positive weights

with universal attributes via the hidden layer, moderate positive weights with superor-

dinate attributes, and weak positive weights with intermediate and individual attributes.

In the absence of input from the item layer, the network always activates universal

attributes above threshold, it activates superordinate attributes above threshold 50% of

the time, and it never activates intermediate or individual attributes above threshold.

The second factor is the probability that the active unit in the representation layer is

damaged. As the number of damaged units increases, so too does this likelihood. Per-

formance for intermediate and individual attributes tracks the combinatorial probability

of choosing the critical unit from a pool of m units given n draws. When the critical

unit is not damaged, performance is unaffected. But when the critical unit is damaged,

performance drops to zero. This contrasts with the effects of damage in versions of

the network with distributed representations, where each additional unit lost causes a

slight dip in performance.

Table 3

Robustness and stability of semantic network models based on the generality of attribute and the number of

units within the network’s representation layer

No. of Units

Attribute Level

Universal Superordinate Intermediate Individual

Robustness Stability Robustness Stability Robustness Stability Robustness Stability

10 1.00 1.00 0.98 0.92 0.91 0.71 0.77 0.40

8 1.00 1.00 0.95 0.82 0.82 0.51 0.61 0.20

6 1.00 1.00 0.87 0.63 0.65 0.25 0.46 0.11

Localist (8) 1.00 1.00 0.82 0.70 0.62 0.44 0.63 0.41
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8.3. Discussion

The number of neocortical neurons decreases by about 10% during adulthood (Pakken-

berg & Gundersen, 1997). How can the brain achieve reliable computations with such

unreliable hardware? One solution to this problem is to allocate extra neurons, or units,

to internal representations. We found that semantic networks with fewer than six repre-

sentation units learned to properly activate attributes for a collection of items. But these

networks were very sensitive to simulated neural damage. The performance of networks

with a greater number of representation units, though equivalent in the absence of pertur-

bation, was far more robust and stable against simulated damage. This conclusion held

even after controlling for the proportion of damaged units. In other words, as the number

of representation units increases, each becomes disproportionately less important. When

representations are distributed, each unit can participate in multiple representations.

Increasing the number of units increases the degree of redundancy in the network, thereby

offsetting the effects of damage.

Another way to achieving reliable computations is to use the same number of units but

in different ways. We contrasted networks where each item unit projected to one repre-

sentation unit or to multiple representation units. The former pattern of connectivity

maintains localist representations of items across the representation layer, but the latter

re-encodes localist representations in a distributed fashion. Although distributed represen-

tations degrade gracefully (Hinton & Sejnowski, 1986), it was unclear whether versions

of the network with this type of representation would actually be more robust. The con-

stant accumulation of small performance decrements in the networks with distributed rep-

resentations could exceed the large, but low probability decrements caused by damaging

individual units in the network with localist representations. This was not the case; the

network with distributed representations was more robust and stable against damage.

These simulations confirm that redundancy, inherent in the architecture of the semantic

network, enhances the robustness of high-level representations against the loss of low-

level units.

Localist representations do not preclude redundancy. Multiple nodes may indepen-

dently represent an entity (Bowers, 2009; Page, 2000). For example, Konorsky (1967)

suggested that the number of redundant units dedicated to a stimulus is proportional to its

importance. This highlights a trade space; increasing redundancy enhances robustness but

necessitates more processing units. A related tradeoff in information theory is between

the efficiency of data transmission (i.e., source coding), and the reliability of data

transmission (i.e., channel coding). If each unit participates in multiple representations, as

with distributed representations, reliability can be increased without greatly decreasing

efficiency (Hinton, McClelland, & Rumelhart, 1986; O’Reilly, 1996).5

Aside from these forms of architectural redundancy, these simulations feature a type of

representational redundancy in terms of the generality of attributes. Universal attributes

were most robust and stable, and individual attributes were least robust and stable. The

loss of knowledge in semantic dementia occurs in the reverse order that it was acquired:

from specific to general concepts (Warrington, 1975). Networks with distributed represen-
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tations produced varying degrees of attribute robustness like those actually seen in

patients with semantic dementia.

9. Simulation 3: Adaptability in strategy selection

The domain of mathematical cognition contains abundant examples of strategic vari-

ability. For example, when solving addition problems, children sometimes start from zero

and count both numbers. Other times, they start from the larger number and count up.

Still other times, they retrieve the answer from memory. This variability is not an artifact

of one child consistently using one strategy and another child using a different strategy.

Within a session, a single child may use as many as five different addition strategies (Sie-

gler, 1987). This variability is also not unique to children performing mental arithmetic.

People of all ages exhibit strategic variability in mathematical and non-mathematical

tasks alike (for a review, see Siegler et al., 1996).

To the extent that problem features favor different strategies, variability can enhance

robustness. To realize the advantages conferred by having a collection of specialized

strategies, however, the individual needs an adaptive choice mechanism. One solution to

this strategy selection problem is reinforcement learning (Erev & Barron, 2005; Rieskamp

& Otto, 2006; Sutton & Barto, 1998; Walsh & Anderson, 2013). After the individual

enacts a strategy and receives feedback, a reward prediction error is computed. The pre-

diction error equals the difference between the reward the individual actually received

and the reward they expected. Prediction errors are used to update the estimated value of

the selected strategy. When expectations are revised in this way, the individual can learn

to accurately predict the utility of each strategy. This form of adaptability enhances the

robustness of the cognitive system against variations in problem features.

9.1. Numerosity judgment

Luwel, Verschaffel, Onghena, and de Corte (2003, 2005), studied strategy selection in a

numerosity judgment task. Participants viewed a 7 9 7 grid that contained filled and empty

squares. In each trial, they were asked how many squares were filled. Participants spontane-

ously adopted two strategies. The first, addition strategy, involves counting each filled

square and stating the cumulative sum. The second, subtraction strategy, involves counting

each empty square and subtracting the cumulative sum from the total number of squares.

In their experiments, Luwel, Verschaffel, Onghena, and de Corte (2003), Luwel,

Lemaire, and Verschaffel (2005) used the choice/no-choice method (Siegler & Lem-

aire, 1997). In no-choice trials, participants were told which strategy to use. No-choice

trials provide information about strategy performance characteristics that is not biased

by problem selection artifacts. In choice trials, participants were allowed to select a

strategy. Choice trials provide information about the adaptiveness of participants’

selections. Results from no-choice trials showed that as the number of filled squares

increased, solution times for the addition strategy rose and solution times for the sub-
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traction strategy fell. In agreement with these outcomes, participants favored the addi-

tion strategy during choice trials when few squares were filled, and they favored the

subtraction strategy when many squares were filled.

9.2. Task model

We built mathematical models of the addition and subtraction strategies. Both models con-

tained an intercept term to capture the duration of cognitive events that were constant across

trials, and both contained a slope term to capture the duration of cognitive events associated

with counting each additional square. On the basis of data from no-choice trials (Luwel et al.,

2005), we estimated separate intercept terms for the addition (0.15 s) and subtraction strate-

gies (2.56 s), and one slope term (0.42 s/square) for both strategies.6 That the intercept for the

subtraction strategy was greater is sensible given that this strategy includes the extra step of

subtracting the cumulative number of empty squares from the total number of squares.

We paired these strategies with an adaptive selection mechanism that used reinforce-

ment learning. The mechanism calculates the expected utility of each strategy as a linear

function of the current input,

Ua ¼
X
j¼1:n

wj;a � Ij ð8Þ

where wj,a is the learned weight between input j and strategy a, and Ij is the activation of

input j. There are two network inputs: a tonic unit with activation set to one, and an

experiment unit that codes the number of filled squares in a continuously varying fashion

from 0.0 (none filled) to 1.0 (all filled).7 At the start of each trial, the model calculates

the expected utility of the two strategies based on the number of filled squares, and

selects the strategy with greater utility.8

After responding, the network receives reward that is exponentially discounted accord-

ing to the duration of the trial (k < 1.0),

reward ¼ 1 � kduration ð9Þ

In the studies by Luwel et al. (2003, 2005), participants did not receive feedback about

whether their responses were correct. When outcomes are equivalent, as in this case,

discounting causes individuals to favor choices that reduce delays. A large literature doc-

uments discounting effects in humans and animals (for a review, see Frederick, Loewen-

stein, & O’Donoghue, 2002).

Prediction error (d) was calculated as the difference between the actual reward

received (Eq. 9) and the expected reward for using the chosen strategy (Eq. 8). Predic-

tion error was used to adjust network weights. The learning rate (a) controlled the step

size of updates,9

wj;a  wj;a þ a � d � Ij ð10Þ
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To summarize, the adaptive selection mechanism learned to associate inputs with each

strategy’s utility, which was a decreasing function of its duration.

9.3. Simulation and results

We tested four models: two contained a single strategy (addition or subtraction), and
two contained both strategies along with a random or an adaptive selection mechanism.

The simulations involved a single perturbation: number of filled squares. For each model,

we simulated performance of 500 participants on numerosity judgment problems where

the number of filled squares ranged from 1 to 49.

Response times for the addition model increased with the number of filled squares, and

response times for the subtraction model increased with the number of empty squares

(Fig. 5). Neither model responded quickly over the full range of problems. Response

times for the random model, though minimally affected by the number of filled squares,

were uniformly slow. Finally, response times for the adaptive model hugged the mini-

mum duration of the addition and subtraction strategies. Of the four models, only the

adaptive model responded quickly to all problems. This was reflected in its lower mean

reaction time across all problems (Adaptive: 7.23 s; Random: 11.63 s; Addition: 10.71 s;

Subtraction: 12.70 s).

The adaptive model seemed most robust. To confirm this analytically, we performed a

robustness analysis of the four models. Because there were no incorrect responses, we

focused on response times. This emphasis reflects the assumption that there are pressures

on cognitive systems to act quickly and correctly (Wickelgren, 1977). Depending on the

task and context, speed and accuracy contribute differentially to functionality. We binned

responses over one-second intervals ranging from 1 to 20 seconds, and penalized all

responses that took longer than 1 second,

Functionality ¼ R1 � R2

T2
þ R3

T3
þ . . .

R20

T20

� �� �
ð11Þ

We set tolerances for responses occurring during each interval as a decreasing, lin-

ear function of the interval’s duration, Tn = 1.00 – 0.05�(duration � 1). Effectively,

tolerance was least for the slowest responses. Following normalization (Eq. 3), we

computed robustness and stability over the range of problems.

As the number of filled squares increased, functionality of the addition model

dropped sharply. Conversely, as the number of empty squares increased, functionality of

the subtraction model dropped sharply. Functionality of the random model was low

when few squares or many squares were filled (i.e., when either strategy performed

poorly), and functionality of the adaptive model remained high except for when an

intermediate number of squares were filled (i.e., when neither strategy performed well).

The regions over which the addition and subtraction strategies were most effective did

not overlap. Nor did the regions over which they were least effective. The adaptive
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selection mechanism learned when to deploy each strategy, yielding the most robust and

stable performance of the four models (Table 4). Though we only tested the models for

grids with 49 squares based on Luwel et al. (2003, 2005), the relative robustness and

stability advantages of the adaptive model hold over grids of all sizes.

The robustness analysis yielded three other outcomes. First, the subtraction strategy

was less robust than the addition strategy. This is because the intercept term was

greater for the subtraction strategy than for the addition strategy (2.56 s vs. 0.15 s).

Second, the subtraction strategy was less stable than the addition strategy even though

variability in their solution times across problems was identical—the same slope term

(0.42 s/square) was used to predict the additional time to count each empty or filled

square. The mapping between reaction times (or accuracy) and functionality can be

non-linear. In this example, functionality drops more steeply as response times increase

(Eq. 11). Because the subtraction strategy has a larger intercept term, equivalent slow-

ing yields lower stability than for the addition strategy. Third, the random model has

low stability even though its mean functionality changes little with the number of filled

squares. Stability measures two sources of variability: variability across scenarios, and

variability within scenarios. For the addition and subtraction models, low stability was

mainly driven by variability across scenarios (e.g., the time to apply addition varies

greatly between problems that contain 1 or 49 filled squares). For the random model,

low stability was mainly driven by variability within scenarios (e.g., the time to respond

to a problem with five filled squares varies greatly between the addition and subtraction
strategies, yet both strategies are selected with equal frequency). For the adaptive

model, variability within scenarios was low because the model consistently selected one

strategy, and variability across scenarios was low because the model consistently

selected the best strategy.

Fig. 5. Numerosity judgment simulations. Average solution times (left) and functionality (right) of adaptive

model, random model, addition model, and subtraction model for problems with different numbers of filled

squares. Shaded regions show �1 standard error of the mean.
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9.4. Discussion

Strategic variability is a pervasive characteristic of performance in domains such as

arithmetic (Siegler, 1987), spelling (Rittle-Johnson & Siegler, 1999), and judgment and

decision making (Gigerenzer & Gaissmaier, 2011). When multiple strategies exist, people

favor those that are best aligned with specific problem features. The choice mechanism

we described, an adaptive network that learns from experience, can be extended to each

of these domains. These simulations demonstrate how adaptability enhances the robust-

ness of behavior against variations in problem features.

The adaptive choice mechanism in this example is based on reinforcement learning, a

technique developed in computer science (Sutton & Barto, 1998). Behavioral studies fur-

nished early support for reinforcement learning in the form of the “law of effect” (Thorn-

dike, 1911). Single-cell recordings provided further support by showing that the firing

rate of dopamine neurons depends on the difference between actual and expected out-

comes (Schultz, 1998). Neuroimaging experiments have since extended this result to

humans by establishing that blood–oxygen level-dependent responses also mirror reward

prediction errors (O’Doherty, 2004), as do electrical signals originating from neural

regions implicated in behavioral selection (Walsh & Anderson, 2012). Thus, reinforce-

ment learning is a principled and general way to achieve adaptability.

This is not the only way to achieve adaptability, however. Distinction is drawn

between model-free and model-based RL (Walsh & Anderson, 2014). In model-free RL,

the approach used here, the individual learns action values directly. In model-based RL,

the individual learns which outcomes different actions lead to, and the values of those

outcomes. Model-free RL relies on reward prediction errors to learn action values,

whereas model-based RL relies on associative learning mechanisms to acquire state tran-

sition and reward probabilities. There are normative arguments for including both types

of control in cognitive agents, there is evidence that the brain implements each (Daw

et al., 2005), and there has been recent progress toward an integrated computational

account of both (Veksler, Myers, & Gluck, 2014). Ohlsson (2011) proposed nine different

modes of learning. Each of these modes, along with RL and associative learning, supports

adaptability in different circumstances. Of these, model-free RL has proven especially

successful at accounting for strategy selection effects across multiple trials, as in the

numerosity judgment task studied here (Erev & Barron, 2005; Rieskamp & Otto, 2006;

Sutton & Barto, 1998; Walsh & Anderson, 2013).

Table 4

Mean robustness and stability of numerosity judgment models, with standard deviations in parentheses

Model Robustness Stability

Adaptive 0.865 (0.037) 0.865 (0.124)

Random 0.701 (0.038) 0.392 (0.065)

Addition 0.743 (0.010) 0.462 (0.033)

Subtraction 0.653 (0.011) 0.321 (0.024)
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Participants’ behavior in the choice condition of Luwel et al. (2003, 2005) closely

resembled that of the adaptive model. As the number of filled squares increased, reaction

times rose and then fell. Participants’ overt verbal reports also suggested that they favored

the addition strategy on problems with few filled squares, and that they favored the sub-

traction strategy on problems with many filled squares. The process measure used in this

experiment, verbal protocols, was instrumental in establishing that participants possessed

a mixture-of-strategies, and that they switched strategies when the number of filled

squares exceeded a critical value. The adaptive model also learns when to switch among

strategies. In this way, it best captures the degree of robustness that participants exhibit

in the numerosity judgment task.

The adaptive model embodies a degree of redundancy: either strategy can be used to

solve any problem, however slowly. But in this example, redundancy alone did not

increase robustness. The random model also contained multiple strategies, yet it per-

formed no better than the addition or subtraction models. Adaptability requires redun-

dancy, but it also requires a way to sense the state of the world, and a method for

acquiring and representing knowledge about which strategies to use in different states.

10. General discussion

Environmental variability drives the requirement for robustness in biology and engi-

neering, but not exclusively there. Cognitive systems also exist within variable environ-

ments. The emerging view from psychology is that robustness is a key property of

cognition as well, motivating the question of how cognitive systems achieve a degree of

robustness. We found that the same general mechanisms that enhance robustness in bio-

logical and engineered systems—system control, redundancy, and adaptability—foster

robust cognition. Our simulations provided concrete demonstrations that these mecha-

nisms safeguard cognitive capacities against a range of perturbations. In psychomotor

vigilance, system control reduces the deleterious effects of fatigue. In semantic memory,

architectural redundancy protects high-level representations from damage to low-level

units. Lastly, in numerosity judgment, adaptability preserves performance despite varia-

tions in problem features.

10.1. Other possible mechanisms

Our list of mechanisms for robust cognition is not exhaustive. Others likely exist.

For example, in biology, robustness has been associated with purging and anti-redun-

dancy, neutrality and sloppiness, conflict management, error detection and repair, and

modularity (Flack et al., 2012). To focus on but one of these, the encapsulation of

functions into separable units increases robustness by restricting damage to local parts

of the organism (Hartwell, Hopfield, Leibler, & Murray, 1999). Such modularity is

evident across multiple levels of biological organization (Csete & Doyle, 2002).
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Likewise, engineers include isolated segments in structural designs to arrest collapse

at segment borders (Canisius, 2011; Starossek & Haberland, 2012).

The concept of modularity has been influential in neuroscience. Measures of neural

connectivity indicate that the brain consists of a hierarchy of modules (Bassett & Gazzan-

iga, 2011; Park & Friston, 2013). Each module contains densely intraconnected nodes,

which share functional specialization and anatomical location.

The concept of modularity has also influenced the study of cognition. Fodor’s

(1983) ideas on the modularity of mind are clearly relevant; however, the theorizing of

Pylyshyn (1999) on cognitive impenetrability and of Simon (1996) on the nature of

complex systems like the mind as nearly decomposable, hierarchic systems are also

foundational in discussions regarding cognitive modularity. Modularity is evident in

contemporary integrated cognitive architectures (Anderson, 2007), and Kurzban (2010)

explores the role of evolutionary selection pressures in producing modular minds.

Although we have not formally quantified robustness for varying degrees of modularity

in this study, there seems to be accumulating evidence in these prior publications that

modularity enhances the robustness of cognitive systems, as it does for biological and

engineered systems.

10.2. The cost of robustness

We have argued that robustness enhances fitness. Yet robustness is costly (Gluck et al.,

2012). For example, a function that depends on multiple redundant components may be

less likely to fail than a function that depends on one component. But the reduction in

the probability of failure comes at the cost of increased resource demands. The brain

ameliorates these costs through pluripotency, a type of structure–function relationship in

which one region can participate in multiple functions (Just & Varma, 2007; Noppeney

et al., 2004). The pluripotentiality of the neural system permits redundancy without dupli-

cation. Likewise, internal representations of concepts are encoded by the activation of

multiple units, each of which participates in multiple representations. Thus, distributed

representations are robust because they do not depend on a single unit, and they are effi-

cient because each unit participates in multiple representations (Hinton & Sejnowski,

1986; O’Reilly, 1998; Rumelhart & Todd, 1993).

Resource demands are not the only cost of robustness. The study of complex systems

has given rise to the idea that robustness is a conserved quantity (Csete & Doyle, 2002;

Kitano, 2007). In order for robustness to increase in one area, it must decrease elsewhere.

For example, modern airplanes are robust against anticipated perturbations such as

weather variation, but fragile against unanticipated perturbations such as power failure. In

other words, a system cannot be categorically or universally robust. Rather, a system is

robust against some sources of variation, but fragile against others.

The fragility of the cognitive system is evident in addiction. The neurotransmitter

dopamine has been implicated in reward learning (Schultz, 1998). The reinforcing effects

of dopamine underlie adaptability. Certain drugs of addiction hijack the dopamine

response, however, producing behavior that is extremely maladaptive and extremely
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robust against intervention (Redish, Jensen, & Johnson, 2008). Although we have focused

on robustness in this study, an understanding of cognitive vulnerabilities is equally impor-

tant. Such an understanding can guide the development of interventions and technologies

to further augment cognitive robustness.

10.3. Advancing a quantification of robustness

Throughout the field of psychological science, neural circuits, cognitive capacities,

and decisions heuristics are often said to be robust. Yet robustness is never directly

measured. One contribution of this study is a quantification of robustness (see also

Walsh et al., 2013). This quantification serves as a starting point, but it leaves some

issues unresolved.

First, statements about robustness must be made with respect to specific perturba-

tions. How should the types and ranges of perturbations be selected? In naturalistic

settings, perturbations and their likelihood (i.e., probability (x) in Eq. 4) may be deter-

mined from observation. In applied settings, anticipated perturbations may be specified

in the design process. In both cases, the choice of perturbation must be clearly articu-

lated and defensible. This specification challenge is not unique to our quantification.

For example, normalized maximum likelihood estimation, a tool for model evaluation,

requires selecting and restricting the ranges of potentially unbounded dependent vari-

ables (Myung, Navarro, & Pitt, 2006). In our quantification, the related challenge is

to restrict the ranges of independent variables.

Second, should functionality be treated as a continuous variable, and robustness as

the integral of functionality across scenarios? An alternate approach is to compute the

proportion of scenarios in which performance remains within allowable risk, and is

thus viable (Hafner, Koeppl, Hasler, & Wagner, 2009; Larhlimi, Blachon, Selbig, &

Nikoloski, 2011). Yet another, more conservative approach is to treat robustness as

functionality in the worst-case scenario (i.e., minimax; Bitmore, 2009). Identifying the

strengths and weaknesses of these approaches, and when to use each, awaits further

analysis.

Third and finally, does stability matter? In our simulations, stability correlated with

robustness. We failed to dissociate robustness and stability because maximum functional-

ity of the candidate models was always similar. As a consequence, systems that exhibited

the smallest loss of functionality were most robust, and necessarily most stable. This need

not be the case. For example, a statistical rule based on optimal weighting of cues may

perform very well when applied to items from the training set but generalize poorly.

Alternatively, a heuristic based on the value of a single cue may perform moderately well

when applied to items from the training set, and also generalize well (Gigerenzer & Gai-

ssmaier, 2011). Though the two may be equally robust, the heuristic would be preferred

for its stability. In fact, predictability of performance, a construct related to stability, is a

key determinant in people’s perception of trustworthiness and reliance on automation

(Lee & See, 2004).
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10.4. Universal laws and invariant properties

Chater and Brown (2008) argue for universal laws of cognition, laws that cut across

cognitive domains. Such laws reflect convergent adaptations to the structure of the envi-

ronment (see also, Anderson, 1991). Our view of robustness as a property of cognition

resonates with this position. We argue that the reoccurring collection of mechanisms for

robustness reflect evolutionary adaptations to the structure of the environment. Because

cognitive systems exist in a variable world, the need for robustness is a critical constraint

in a computational theory of cognition (Marr, 1982).

Simon (1996) drew a distinction between the natural sciences and the artificial

sciences. In this dichotomy, the artificial sciences are concerned with phenomena that

are contingent on the interaction between a system’s purposes or goals and the environ-

ment in which it exists. In contrast, the natural sciences do not involve the study of

goal-driven systems. Simon’s research was motivated predominantly by the proposal

that bounded rationality (1982, 1996) is the necessity, the invariant, that emerges from

the contingencies of artificial systems. Perhaps robustness is the invariant property that

emerges from selection pressures operating on all complex systems, whether natural or

artificial. The merit of this proposal must be evaluated by others, but the idea serves as

a foundation for our interest in domain-general mechanisms that produce robust

cognition.

10.5. Future directions

To advance the study of robustness in cognitive science, we advocate three practices.

First, quantification of robustness should supplant vague qualitative claims. The word

robust appears throughout the psychological literature (Walsh et al., 2013). Unfortunately,

it is used inconsistently and ambiguously. This impedes scientific and technical progress

in measuring and achieving robustness. Quantification enhances the transparency of the-

ory predictions, and provides an objective way to express and compare the performance

of different systems.

Our quantification is not meant to replace metrics of model fit (e.g., response times,

response accuracy, etc.). In fact, our quantification can be applied equally well to simu-

lated data from models and also to empirical data from experiment participants. In this

way, robustness can be treated as a dependent measure to assess the correspondence

between predicted and observed performance. As noted throughout the simulations, cer-

tain model variants exhibited a degree of robustness akin to experiment participants, and

others did not. To perform this type of comparison, however, one must first conduct the

necessary studies with humans.

This brings us to our second general recommendation. Studying robustness requires

adopting different experiment paradigms. To show that a cognitive system is robust

against a source of variation, one must evaluate the system in multiple states; for exam-

ple, testing a participant who is rested and then fatigued. The mechanisms we identified

protect performance against perturbation, and so cannot be demonstrated with a single
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condition. This is evident in our first and second simulations: In the absence of perturba-

tion, system control did not affect functionality in psychomotor vigilance, and redundancy

did not affect functionality in semantic memory. In addition, to show that a mechanism

enhances robustness against a source of variation, one must disrupt the mechanism and

then apply the perturbation. If the mechanism enhances robustness, performance will be

impaired in the perturbed state when the mechanism is disrupted.

Third and finally, although cognitive models have successfully captured the behavior

of individuals in isolated scenarios, they often prove fragile when exposed to new tasks

or objectives (Anderson & Lebiere, 2003; Gluck & Pew, 2005; Newell, 1990). Although

robustness may be a universal law or an invariant property of cognitive systems, it is not

typically a property of computational cognitive models. Incorporating the mechanisms we

identified here into cognitive architectures and the knowledge available to them will

enhance the robustness of cognitive models.

Some progress has already been made toward this objective. Different integrated cog-

nitive architectures incorporate these mechanisms to varying extents. For example, in

the ACT-R model of the PVT (Gunzelmann et al., 2009), the cognitive system decreases

the utility threshold for action selection upon detecting fatigue. Other architectures mon-

itor physiological and emotional states to select high-level goals that regulate those

states (Bach, 2009; Gratch & Marsella, 2007). These forms of system control protect

performance against fatigue and other potentially threatening cognitive moderators. In

addition, the 4CAPS architecture consists of cortical areas that become active during

task performance (Just & Varma, 2007). Each area can perform multiple cognitive func-

tions, and each cognitive function can be performed by multiple areas. This redundancy

allows 4CAPS to maintain cognitive capacities even when cortical areas responsible for

them are damaged or unavailable. Lastly, the Soar cognitive architecture was recently

expanded to include reinforcement learning (Nason & Laird, 2005). This allows Soar

agents to acquire statistical information about the past success of their actions to facili-

tate greater adaptability in operator selection. System control, redundancy, and adaptabil-

ity are certainly relevant for cognitive architectures, but that is not the only message of

this study. Inclusion of these mechanisms in cognitive models more generally is a nec-

essary step toward human-level robustness.
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Notes

1. Though we focus on human cognition in this study, our position is that robustness

is a key property of non-human cognitive systems as well.

2. This list is not exhaustive, but these are the most studied mechanisms of robustness

(for others, see Flack et al., 2012).

3. FT is a notational variation in the threshold adjustment mechanism previously

introduced in Gunzelmann et al. (2009).

4. The standard approach to evaluating cognitive models is to compute goodness of fit

metrics using dependent variables such as response time and accuracy. By these

metrics, the fit of the model to the PVT data is exceptional (Gunzelmann et al.,

2009; Walsh et al., submitted). An alternate approach, suggested here, is to com-

pute the robustness of human behavior, and to compare it with model robustness.

5. Another relevant tradeoff is between adequately capturing outputs and overfitting the

data. An excessively flexible model might respond correctly to training stimuli, but

generalize poorly. As the number of units in the representation layer increases, so does

this potential for overfitting (Geman, Bienenstock, & Doursat, 1992). Other factors

such as weight limits and training procedure also affect the tendency for overfitting.

6. These models closely matched solution time data from adults in the no-choice con-

dition of Luwel et al. (2005), r2 = .99, MSE = 0.009. To produce variability in

response durations, we treated the time to count each square as a uniform random

variable with a range equal to its mean. We also treated the intercept term as a uni-

form random variable with a range equal to its mean.

7. The tonic unit determines the baseline activation of each strategy’s output unit in

the absence of external input.

8. Logistically distributed noise with a mean of zero and a standard deviation of 0.05

was added to utility values to produce choice variability.

9. We set the discounting parameter (k) to 0.9 and the learning rate (a) to 0.3. We

obtained similar results even after reducing the discounting parameter and learning

rate by a factor of two. Before testing the adaptive network, we trained it on one

pass through the problem set.
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