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Sleep loss impacts cognitive functioning, and the resulting performance changes can
have dramatic consequences in the real world. The increased risk to property and
human life has motivated decades of empirical research on fatigue and its effects on
performance. Models now exist that can predict the general time course and magnitude
of changes in cognitive function caused by fatigue. These models have enabled the
development of tools that are useful for shift work and sleep scheduling to improve
safety. However, these models are incapable of making a priori predictions regarding
the precise, task-specific effects that sleep loss and circadian rhythms will have on
performance. Such a capability would make it possible to perform simulation-based
risk assessments by conducting systematic evaluations over spaces of system designs,
training approaches, policy interventions, and sleep/work schedules. It would also
support monitoring technologies to detect behavioral evidence of fatigue. To develop
such applications, computational process models that run in simulation are needed to
produce behavior predictions in the domains of interest. In this article we review and
summarize research committed to precisely this goal, we assess progress to date, and
we describe remaining challenges on the path to application.
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The consequences of sleep deprivation, cir-
cadian misalignment, and restricted sleep have
been extensively documented in the experimen-
tal literature over more than a century (Lim &
Dinges, 2010; Patrick & Gilbert, 1896). The
impacts range from the relatively inconsequen-
tial, such as increased response times and errors

in simple arithmetic tasks (Gunzelmann, Gluck,
Moore, & Dinges, 2012), to the catastrophic,
such as commercial airline crashes and ecolog-
ical disasters (Baker, Olson, & Morisseau,
1994; Dinges, 1995). Much of the research on
fatigue has been motivated by practical con-
cerns over safety and risk—concerns that are
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increasing in importance as the evolution of
modern society has made sleep loss and circa-
dian desynchrony common features of everyday
life.

Sleep research has significantly advanced our
understanding of fatigue, leading to a more rig-
orous scientific foundation and informing pol-
icy decisions intended to reduce risk in real-
world settings. For instance, the role of
drowsiness in accidents has been documented in
the airline industry, in railroad operations, on
roadways, and in nuclear power plant opera-
tions (Baker et al., 1994; Dean, Fletcher, Hursh,
& Klerman, 2007; Dinges, 1995; Hursh et al.,
2004). These observations have led to regula-
tions intended to mitigate the dangers of fatigue;
for example, hours of service regulations for
commercial vehicle operators, and flight duty
restrictions for pilots (for a review, see Avers &
Johnson, 2011).

Biomathematical Models:
Applications and Limitations

Biomathematical models of fatigue and its
effects on cognitive performance underlie many
applications of sleep research (Dean et al.,
2007; Hursh et al., 2004). The foundation of
these models is based on the influential two-
process theory of sleep regulation (Borbély,
1982), in which alertness decreases with time
awake (sleep homeostasis component), and is
modulated by time of day (circadian compo-
nent). Other factors, such as light exposure and
sleep inertia, are included in some models (Jew-
ett & Kronauer, 1999; Van Dongen, 2004). The
output of the biomathematical models (a numer-
ical estimate of overall cognitive functioning, or
alertness) naturally leads to mitigation strate-
gies that focus on optimizing schedules to min-
imize the likelihood of degraded cognitive pro-
cessing at critical times.

Quantitative tools based on biomathematical
models of fatigue have been used to design
schedules that optimize overall alertness and
cognitive performance under a set of constraints
(e.g., flyawake.org). In addition, biomathemati-
cal models have been used to assess the role of
fatigue in accident investigations, highlighting
how lack of sleep or circadian troughs may have
contributed to errors or lapses in attention (Dean
et al., 2007; Hursh et al., 2004). These applica-
tions demonstrate the value of models for fa-

tigue risk management. However, because our
society operates 24/7, fatigue and the ensuing
cognitive decrements are not always avoidable.
For example, the circadian rhythms of shift
workers do not typically adjust to their work
schedules (Van Dongen, 2006), and lower sleep
quality is common when sleep is obtained dur-
ing circadian peaks rather than nadirs (Åker-
stedt, 2003).

Equally problematic, the specific effects of
fatigue on task performance are not always ob-
vious in advance. Even simple tasks depend on
multiple cognitive components, each of which
may be affected differently by fatigue (Van
Dongen, Baynard, Maislin, & Dinges, 2004).
Consequentially, understanding the higher-level
alertness dynamics associated with fatigue does
not, by itself, provide a capability to accurately
predict the types and timing of fatigue-related
mistakes in different task contexts.

Key Questions and Requirements

To better mitigate fatigue-related errors and
accidents, it is necessary to address questions
that go beyond identifying general trends in
alertness. Effective technology development
and policy interventions depend upon our abil-
ity to answer three critical questions about the
consequences of fatigue:

1. What errors will be made?
2. When will they happen?
3. Why will they occur?

Answering these questions will lead to a
more comprehensive understanding of the ways
in which fatigue creates risk in real-world set-
tings. However, to answer them we must adopt
new modeling paradigms. Biomathematical
models provide a partial answer to the question
of when errors will happen, but they do not
address questions about what errors become
more likely when people are tired, or why they
will occur. As Dinges (2004) states:

Most current models of fatigue and its effects on per-
formance appear to be more descriptive curve-fitting,
than theoretically driven, hypothesis-generating, data-
organizing mathematical approaches. (p. A182)

In accident investigations, questions about
what happened and why are addressed in a post
hoc manner through the analysis of accident
timelines and data (Tivesten & Wiberg, 2013).
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In these cases, causal errors are known, or are
inferred based on evidence collected during the
investigation. However, to prevent accidents,
predictive tools are needed to identify what the
fatigue related risks are, and how to mitigate
them, before an accident actually occurs.
Dinges (2004) goes on to suggest ways of build-
ing upon mathematical models of alertness to
address these more complex challenges:

What is needed is development (maturation) of theo-
retical models of the temporal dynamics of human
neurobehavioral functions, which should include sleep
and circadian components, but also extend to include
individual differences in these parameters and cogni-
tive vulnerability to them, as well as cognitive model-
ing components of performance changes . . . and per-
haps also a computational model component for the
behavioral and physical structure of the task to be
performed. (p. A182)

Models that provide a comprehensive picture
of the fatigue landscape have the potential to
improve our understanding of how risk ebbs and
flows through the dynamics of human cognition
and behavior interacting with task environ-
ments. This will enable the development of mit-
igation strategies that go beyond managing hu-
man activity through schedule manipulation.
One strategy is to systematically evaluate alter-
native system designs and training approaches.
In any complex work environment, people must
interact with multiple technologies. Decisions
about system design and training can be at least
as influential in mitigating accident risk as
work-rest schedules. Another strategy is real-
time monitoring to identify situations with in-
creased risk of critical errors. Real-time, indi-
vidualized monitoring may provide a more
sensitive measure of accident risk than popula-
tion-based models of alertness. In the remainder
of this paper, we pursue the dual objectives of
(a) providing a review of the state of the art in
simulating the effects of fatigue on cognition,
and (b) evaluating the current and future poten-
tial of our approach for reducing the risk of
fatigue-related errors and accidents.

Computational Cognitive Process
Models of Fatigue

Unlike the long history of empirical research
on fatigue and the accompanying development
of biomathematical models, validated computa-
tional process models that replicate the impact

of sleep loss on cognitive functioning have ap-
peared only recently (e.g., Gunzelmann, Gross,
Gluck, & Dinges, 2009; Ratcliff & Van Don-
gen, 2009; see also Gluck & Gunzelmann,
2013). The biomathematical models described
earlier predict fluctuations in alertness over the
course of hours and days, but they are silent
with respect to the question of how fatigue
impacts various underlying cognitive process-
ing components. To account for specific behav-
ioral data, biomathematical model outputs are
scaled to performance measures such as re-
sponse time or accuracy (e.g., Van Dongen,
2004). By contrast, computational cognitive
models provide mechanistic accounts for how
fluctuations in alertness impact the efficiency
and effectiveness of various information pro-
cessing mechanisms and they enable quantita-
tive performance predictions. In this way, com-
putational cognitive models bridge sleep
research and cognitive science. Several exam-
ples of this approach have appeared in the lit-
erature, as discussed next.

Soar

An early example of a computational cogni-
tive model of fatigue was an effort to integrate
fatigue into a model of fighter pilot behavior
developed in Soar (Jones, Laird, & Neville,
1998). Soar is a general theory of human cog-
nition implemented computationally and capa-
ble of running in simulation (Laird, 2012). Gen-
eral computational theories of this sort are
referred to as cognitive architectures (Gluck,
2010). Fatigue was implemented by increasing
the time required for the fighter pilot model to
perform cognitive operations. The model pro-
vided an effective demonstration of degraded
performance in a cognitive architecture, but the
model and mechanisms were not evaluated with
respect to human performance data. In addition,
there has been no follow-up research in Soar to
build upon this demonstration. Thus, although
the model provides an implementation of fa-
tigue in a cognitive architecture, it lacks neces-
sary validation.

PMFServ

A very different effort to develop a cognitive
account of fatigue is seen in the human behav-
ioral emulator system, PMFServ (Silverman,
Johns, Cornwell, & O’Brien, 2006). PMFServ
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is composed of seven interrelated modules.
Each module synthesizes dozens of perfor-
mance moderator functions (PMFs), or mi-
crotheories of how human performance is
affected by different factors (e.g., sleep, affect,
temperature, etc.). Fatigue is implemented in
the biology/stress module (Silverman et al.,
2006), and is described as “a normalized metric
based on current level of many of the physio-
logical reservoirs” (p. 147). As with the Soar
fatigue model, we were unable to find an
explicit comparison with quantitative human
performance data. Additionally, fatigue in
PMFServ manifests at a relatively high level of
abstraction, called adopted coping style. This
makes PMFServ less suitable for predicting pre-
cise, task-specific effects of fatigue.

IMPRINT

IMProved Research INTegration (IMPRINT)
is a task network modeling tool that allows
analysts to develop human performance models
for estimating manpower, personnel, training
requirements, and for evaluating system design
options. One feature of IMPRINT is the capac-
ity to include fatigue as a moderator of perfor-
mance predictions (Hursh, 2010). Similar to
research using ACT-R, which is described be-
low, the inclusion of fatigue involves integrat-
ing a biomathematical model of fatigue with the
IMPRINT system. When fatigue is included as
a moderating factor, changes in cognitive effec-
tiveness impact task completion times. We have
not been able to find any validation studies
comparing human performance with the output
of IMPRINT integrated with fatigue. In addi-
tion, IMPRINT lacks detailed mechanisms rep-
resenting different components of cognition,
which creates challenges for making predictions
about performance in novel tasks.

Diffusion Model

Another computational approach to modeling
fatigue is based on a diffusion process that
simulates the accumulation of information dur-
ing cognitive task performance (Ratcliff & Van
Dongen, 2009, 2011). The diffusion model be-
longs to a class of sequential sampling models
for simple reaction time (RT) and two-
alternative forced-choice paradigms. Ratcliff
and Van Dongen (2011) showed that the tem-
poral dynamics of sleep loss could be seen as

affecting a composite model parameter, drift
rate divided by drift rate variability. Drift rate is
the mean rate at which the evidence accumula-
tion process moves toward the correct decision
boundary. Reducing drift rate effectively re-
duces the signal-to-noise ratio in evidence ac-
cumulation as fatigue increases.

The diffusion model has been validated
against human performance data in simple RT
and two-alternative forced choice experiments
(Ratcliff & Van Dongen, 2009, 2011). How-
ever, the diffusion model lacks the integration
of mechanisms necessary to achieve sufficient
breadth of prediction. Its main limitation is that
it does not contain mechanisms to represent
information processes outside of the decision
process itself. Other components of cognition
are represented collectively with a single pa-
rameter called nondecision time. This leads to
shortcomings in generalizing to more complex
tasks, and in predicting certain types of errors in
well-studied tasks. For instance, in the simple
RT task used in Ratcliff and Van Dongen
(2011), the model was unable to account for
false starts—responses made before the stimu-
lus is presented (but see Walsh, Gunzelmann, &
Van Dongen, 2014).

ACT-R

ACT-R, like Soar, is an integrated cognitive
architecture that is intended to account for the
capacities and limitations of the human mind
(Anderson, 2007). ACT-R contains a set of
modules that correspond to separate compo-
nents of cognition (e.g., motor control, vision,
declarative memory, and goal maintenance),
and that are associated with various brain re-
gions. The procedural module coordinates the
activities of the other modules. Procedural
knowledge is represented in the form of produc-
tion rules. Each rule has a set of conditions that
must be met for it to be selected, and a set of
actions that modify the internal state of the
architecture and the external state of the world.
Each rule also has a utility value that represents
the reward that it is expected to lead to. Cogni-
tion unfolds across a series of production cy-
cles. During each cycle, noisy utility values are
computed for each production, the production
with the highest utility is selected, and it is
enacted if its utility exceeds a utility threshold.
The resulting state of the architecture and of the
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world serves as the starting point for the next
production cycle.

We have proposed and validated mechanisms
that account for the effects of fatigue on central
cognition by integrating ACT-R with a biom-
athematical model of fatigue described in Mc-
Cauley et al. (2009). The mechanisms involve
three component interactions (Gunzelmann,
Gross, et al., 2009). First, when no production’s
utility exceeds the utility threshold, a micro-
lapse occurs; the model briefly becomes inac-
tive before searching for another production to
enact. Second, production utilities decrease as
fatigue increases. Consequently, microlapses
occur more frequently and production selection
is increasingly driven by noise. Third, the utility
threshold decreases as fatigue increases. This
partially compensates for the effect of fatigue
on production utilities, but it also allows pro-
ductions with lower utility to be selected be-
cause of the impact of noise. The precise effects
of cumulative time awake and time of day on
production utilities and utility threshold are
controlled by the biomathematical model of fa-
tigue (McCauley et al., 2009).

Gunzelmann, Gross, et al. (2009) validated
the integrated theory using the psychomotor
vigilance task (PVT), a simple RT task that
measures sustained attention. The integrated
ACT-R model captured performance changes,
including shifts in the response time distribution
and false starts (Supplemental Figure 1), and the
ACT-R model behaved similarly to an adapted
version of the diffusion model described above
(Walsh et al., 2014). Additionally, the model
accounted for individual differences and time
on task effects (Gunzelmann, Moore, Gluck,
Van Dongen, & Dinges, 2009, 2011). The same
mechanisms account for performance changes
in a psychological refractory period (PRP) ex-
periment as well (Gunzelmann, Byrne, Gluck,
& Moore, 2009). In addition, they predict qual-
itative changes associated with fatigue on lane
deviations during a driving task (Gunzelmann,
Moore, Salvucci, & Gluck, 2011), and they
capture transient declines associated with the
vigilance decrement (Veksler & Gunzelmann,
2013).

We have proposed a functionally similar
mechanism to account for fatigue in declarative
knowledge; fatigue reduces declarative knowl-
edge activation in ACT-R, causing retrieval
failures and errors (Gunzelmann et al., 2012).

By pairing this mechanism with microlapses,
we were able to make predictions about changes
in performing instrument flight maneuvers in a
piloting context (Gunzelmann & Gluck, 2009),
although empirical data are needed to validate
those predictions. We have also explored the
impact of fatigue on acquiring declarative
knowledge (Halverson, Gunzelmann, Moore, &
Van Dongen, 2010) and on time estimation
(Moore & Gunzelmann, 2013).

Critically, the models of driving and flying be-
havior were used to make a priori predictions. The
mechanisms accounting for performance degrada-
tion have been integrated with previously pub-
lished models of these tasks (Gluck, Ball, Krus-
mark, Rodgers, & Purtee, 2003; Salvucci, 2006).
There was no adjustment of parameters to fit data.
The fatigue mechanisms produce degradations in
the functioning of the architecture, which have
implications for the performance of any model
that depends on the affected components of cog-
nition. Returning to the three questions posed in
the introduction of this article, these examples
illustrate the potential for simulation as a method-
ology to enable predictions about what errors will
be made, when they will happen based upon both
level of fatigue and task context, and what under-
lying deficits in information processing will cause
them to occur.

Applications of Computational Cognitive
Models of Sleep and Fatigue

Quantifying real-world risk directly from the
results of simple laboratory tasks is difficult.
The formalization of psychological theory into
computational mechanisms is one way to bridge
this gap. In the introduction, we identified two
potential applications of computational cogni-
tive models of fatigue. First, we noted that such
models could inform decisions regarding sys-
tem design and training. The central idea here is
that models can be used for an analysis of
alternatives when usability studies are danger-
ous to conduct, prohibitively expensive, or both.
Second, the models could be used to monitor
individuals for signs of fatigue.

Cognitive models have already been used in
these ways, so there are precedents, although
typically without a specific focus on fatigue. For
example, simulations based on CPM-GOMS, a
human information processor modeling frame-
work, exposed inefficiencies in a new telephone
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operator workstation (Gray, John, & Atwood,
1993). The model results informed a decision to
not purchase the new system, leading to esti-
mated savings of more than $2 million per year
in operating costs. Cognitive models have been
built to explore the design space of cell phone
menus (St. Amant, Horton, & Ritter, 2007), and
to evaluate phone system integration for driving
(Salvucci, 2006). We have demonstrated the
potential for using computational cognitive
models to predict the interactive effects of fa-
tigue with differences in knowledge and skill,
such as those that might arise from alternative
training levels or approaches (Gunzelmann &
Gluck, 2009). In those simulation-based analy-
ses we showed that some approaches to UAV
maneuvering are more robust to the stress of
fatigue than others, which of course has impli-
cations for training.

Cognitive models have also been built to
predict the behavior of different populations:
for instance, cell phone use or interface search
by younger and older adults (Jastrzembski &
Charness, 2007). The setting of model parame-
ters to simulate the performance of younger and
older adults is conceptually similar to our im-
plementation of fatigue mechanisms to simulate
the performance of rested and fatigued individ-
uals. The application of cognitive models of
fatigue to system design and training is espe-
cially valuable given the high cost of conduct-
ing sleep research studies, and the substantial
risk associated with performing certain tasks in
a fatigued state.

The second potential application of computa-
tional cognitive models is to monitor human
performance for signs of fatigue. This is the flip
side of design—rather than using a model to
predict behavior given a known underlying
physiological or cognitive state, one uses the
model to infer that state from observable behav-
ior. In this case, models are used to detect the
onset of fatigue, and to trigger interventions that
prevent further declines and associated errors.

The successful application of cognitive mod-
els to performance monitoring is seen in intel-
ligent tutoring systems (Anderson, Corbett,
Koedinger, & Pelletier, 1995). Intelligent tutors
monitor student behavior, and provide instruc-
tional interventions (i.e., hints, feedback, and
problem selection) that guide the student to
greater expertise (Anderson & Gluck, 2001).
Overt behaviors such as key presses, mouse

clicks, and eye movements are used to infer the
student’s understanding of the task. This infer-
ence process, known as knowledge tracing, re-
quires a theory of cognition and a model of
performance in the instructional domain (An-
derson & Gluck, 2001). Although this may ap-
pear very different from monitoring operators
for signs of fatigue, the underlying approach is
the same. Measures such as response time, re-
sponse time variability, and the frequency and
types of errors provide evidence that can be
used to identify when fatigue-related degrada-
tions are likely to impact overall performance.
Other biobehavioral measures (e.g., heart rate,
pupil occlusion, facial expressions) may some-
day be combined with behavioral data to pro-
vide converging evidence about an individual’s
overall state and readiness to perform.

Challenges on the Path to Application

Existing applications of computational mod-
els provide examples of how they can be used to
maximize human performance, improve hu-
man–system interaction, and reduce risk. The
question in the context of fatigue is whether
current models are also sufficiently mature to
enable application. Our position, especially
with respect to the ACT-R models, is that the
computational mechanisms we have developed
and validated to account for the deleterious ef-
fects of fatigue in laboratory tasks are well-
positioned to provide benefits in applied do-
mains. However, there are some important
challenges to address.

Three critical challenges for the transition of
these models are as follows: (a) achieving ade-
quate theoretical breadth in accounting for
changes in cognitive functioning, (b) suffi-
ciently validating the predictions of the inte-
grated theory in complex task contexts, and
(c) minimizing model development costs. In our
research, we have explored the impact of fa-
tigue on multiple components of cognition, but
the account remains incomplete. Extensions of
the theory to perceptual processes and motor
action are among the current and future research
directions we are pursuing. In addition, the
mechanisms must be tested in tasks in which the
integrated functioning of the whole cognitive
system is required for effective performance.
Although we have demonstrated that our mod-
els can make performance predictions in real-

111SIMULATING FATIGUED COGNITION AND BEHAVIOR



world tasks (Gunzelmann & Gluck, 2009; Gun-
zelmann, Moore, Salvucci, et al., 2011), those
predictions have not been validated rigorously
enough to support applications. This is a neces-
sary step before we can take seriously predic-
tions about what errors will occur, and why.

Another dimension of the validation issue
pertains to significant individual differences in
susceptibility to fatigue (Van Dongen et al.,
2004). This creates significant challenges, par-
ticularly for applications that monitor human
performance for signs of fatigue-related degra-
dations. However, this challenge has been ef-
fectively dealt with elsewhere. To the extent
that individual differences are stable, it should
be possible to assess and control for these dif-
ferences. For example, ACT-R parameters re-
lated to declarative memory vary in models of
individual people, but can be measured and
fixed for a particular person (e.g., Daily, Lovett,
& Reder, 2001). Likewise, the impact of fatigue
on an individual’s performance shows high
test–retest reliability (Van Dongen et al., 2004).
In our integrated models of fatigue, we have
found that the parameters that account most for
individual differences include processing speed
(production cycle time) and how rapidly pro-
duction utility and the utility threshold decrease
with fatigue (Gunzelmann, Moore, et al., 2009;
Walsh et al., 2014). So, although future work
must be attentive to individual differences in the
impact of sleep loss on cognitive performance
and behavior, these differences should not pre-
vent the development of applications that help
to reduce risk.

A final challenge to the use of computa-
tional models for fatigue management and
risk mitigation is cost. Currently, developing
computational models requires expertise in
cognitive psychology and computer science.
Models are expensive to build, challenging to
integrate into existing systems, and difficult
to update as the system evolves and changes
(Gluck, 2010). One solution to this challenge
is to develop systems that can be used by
subject matter experts in the domain of appli-
cation, rather than requiring specialized ex-
pertise in the cognitive sciences (John, Gray,
& Patton, 2012). Such systems have been
developed to facilitate this transition in the
case of mathematical models of alertness
(e.g., Eddy & Hursh, 2006). They allow users
to create and optimize schedules to maximize

alertness, providing an example of how to
apply scientific theories to questions of fa-
tigue in real-world settings. Analogous tools
are needed to bring computational cognitive
models of fatigue to bear on real-world issues
and challenges.

Conclusion

Decreased alertness generally leads to worse
performance. However, in any safety-critical
domain where fatigue is a factor, it is necessary
to be more precise. Earlier in the article, we
described biologically and physiologically in-
spired mathematical models that make quanti-
tative predictions about alertness. We then de-
scribed several attempts to incorporate fatigue
into computational systems that simulate human
cognitive processing and behavior. Computa-
tional cognitive models can effectively bridge
the gap between the outputs of biomathematical
models and performance predictions for specific
tasks. Biomathematical models provide insight
into the dynamics of fatigue, whereas computa-
tional models provide more detail regarding the
consequences of those dynamics for perfor-
mance. Results from the integrated models re-
veal interesting theoretical insights, and demon-
strate the potential value of this methodological
approach in real-world contexts. Together, they
can answer the three critical questions raised in
the introduction to this article, providing a more
comprehensive account of the impact of fatigue
on cognitive performance.

The ability to make predictions in the context
of complex tasks like driving and UAV naviga-
tion illustrates the potential to move beyond
scaling techniques and parameter fitting to prin-
cipled, mechanistic computational models that
forecast how fluctuations in alertness will im-
pact various components of cognition and, ulti-
mately, performance. We have made significant
progress in our research to date. We continue to
extend this research in both breadth and depth to
provide a more complete understanding of the
link between dynamic changes in alertness and
associated variations in cognitive functioning
that have consequences for behavior and perfor-
mance. These extensions include exploring the
impact of fatigue on other components of cog-
nition (e.g., perceptual and motor processes,
learning rates), and conducting further valida-
tion studies to demonstrate the capacity to make
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accurate predictions about the impact of fatigue
in more naturalistic tasks. The resulting inte-
grated theory will provide the foundation for
new technologies that can be used to reduce
fatigue-related accidents and errors.
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